Advertisement

A Terminating and Confluent Linear Lambda Calculus

  • Yo Ohta
  • Masahito Hasegawa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4098)

Abstract

We present a rewriting system for the linear lambda calculus corresponding to the {!, \(\multimap\)}-fragment of intuitionistic linear logic. This rewriting system is shown to be strongly normalizing, and Church-Rosser modulo the trivial commuting conversion. Thus it provides a simple decision method for the equational theory of the linear lambda calculus. As an application we prove the strong normalization of the simply typed computational lambda calculus by giving a reduction-preserving translation into the linear lambda calculus.

Keywords

Equational Theory Linear Logic Reduction Rule Springer Lecture Note Strong Normalization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barber, A.: Linear Type Theories, Semantics and Action Calculi. PhD Thesis ECS-LFCS-97-371, University of Edinburgh (1997)Google Scholar
  2. 2.
    Barber, A., Plotkin, G.: Dual intuitionistic linear logic. Manuscript. An earlier version available as Technical Report ECS-LFCS-96-347, LFCS, University of Edinburgh (1997)Google Scholar
  3. 3.
    Barr, M.: *-autonomous categories and linear logic. Math. Struct. Comp. Sci. 1, 159–178 (1991)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bierman, G.M.: What is a categorical model of intuitionistic linear logic? In: Dezani-Ciancaglini, M., Plotkin, G. (eds.) TLCA 1995. LNCS, vol. 902, pp. 78–93. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  5. 5.
    Crole, R.: Categories for Types. Cambridge University Press, Cambridge (1993)MATHGoogle Scholar
  6. 6.
    Ghani, N.: Adjoint rewriting and the!-type constructor (manuscript) (1996)Google Scholar
  7. 7.
    Girard, J.-Y.: Linear logic. Theoret. Comp. Sci. 50, 1–102 (1987)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Hasegawa, M.: Girard translation and logical predicates. J. Funct. Programming 10(1), 77–89 (2000)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Hasegawa, M.: Linearly used effects: monadic and CPS transformations into the linear lambda calculus. In: Hu, Z., Rodríguez-Artalejo, M. (eds.) FLOPS 2002. LNCS, vol. 2441, pp. 67–182. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Hasegawa, M.: Semantics of linear continuation-passing in call-by-name. In: Kameyama, Y., Stuckey, P.J. (eds.) FLOPS 2004. LNCS, vol. 2998, pp. 229–243. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Hasegawa, M.: Classical linear logic of implications. Math. Struct. Comput. Sci. 15(2), 323–342 (2005)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Huet, G.: Confluent reductions: Abstract properties and applications to term rewriting systems. J. ACM 27(4), 797–821 (1980)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Lambek, J., Scott, P.: Introduction to Higher-order Categorical Logic. Cambridge University Press, Cambridge (1986)MATHGoogle Scholar
  14. 14.
    Stark, I., Lindley, S.: Reducibility and ⊤ ⊤-lifting for computation types. In: Urzyczyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 262–277. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Maraist, J., Odersky, M., Turner, D.N., Wadler, P.: Call-by-name, call-by-value, call-by-need and the linear lambda calculus. In: Proc. 11th Mathematical Foundations of Programming Semantics. ENTCS. Electr. Notes Theor. Comput. Sci., vol. 1, pp. 370–392 (1995)Google Scholar
  16. 16.
    Mellies, P.-A.: Categorical models of linear logic revisited. Theoret. Comp. Sci. (to appear, 2003)Google Scholar
  17. 17.
    Moggi, E.: Computational lambda-calculus and monads. In: Proc. 4th Annual Symposium on Logic in Computer Science pp. 14–23 (1989); a different version available as Technical Report ECS-LFCS-88-86, University of Edinburgh (1988)Google Scholar
  18. 18.
    Sabry, A., Wadler, P.: A reflection on call-by-value. ACM Transactions on Programming Languages and Systems 19(6), 916–941 (1997)CrossRefGoogle Scholar
  19. 19.
    Seely, R.A.G.: Linear logic, *-autonomous categories and cofree coalgebras. Categories in Computer Science, AMS Contemp. Math. 92, 371–389 (1989)MathSciNetGoogle Scholar
  20. 20.
    Terese.: Term Rewriting Systems. Cambridge University Press, Cambridge (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yo Ohta
    • 1
  • Masahito Hasegawa
    • 1
  1. 1.Research Institute for Mathematical SciencesKyoto UniversityKyotoJapan

Personalised recommendations