Separation Results Via Leader Election Problems

  • Maria Grazia Vigliotti
  • Iain Phillips
  • Catuscia Palamidessi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4111)


We compare the expressive power of process calculi by studying the problem of electing a leader in a symmetric network of processes. We consider the π-calculus with mixed choice and with separate choice, value-passing CCS and Mobile Ambients. We provide a unified approach for all these calculi using reduction semantics.


Electoral System Parallel Composition Leader Election Separation Result Maximal Computation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angluin, D.: Local and global properties in networks of processors. In: Proceedings of the 12th Annual ACM Symposium on Theory of Computing, pp. 82–93. ACM Press, New York (1980)Google Scholar
  2. 2.
    Boudol, G.: Asynchrony and the π-calculus. Technical Report 1702, INRIA Sophia-Antipolis (1992)Google Scholar
  3. 3.
    Bougé, L.: On the existence of symmetric algorithms to find leaders in networks of communicating sequential processes. Acta Informatica 25, 179–201 (1988)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Cardelli, L., Gordon, A.D.: Anytime, Anywhere: Modal Logic for Mobile Ambients. In: Proceedings of the 27th ACM Symposium on Principles of Programming Languages, pp. 365–377 (2000)Google Scholar
  5. 5.
    Cardelli, L., Gordon, A.D.: Mobile ambients. Theoretical Computer Science 240(1), 177–213 (2000)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Castagna, G., Vitek, J., Zappa Nardelli, F.: The Seal calculus. Information and Computation 201(1), 1–54 (2005)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Ene, C., Muntean, T.: Expressiveness of point-to-point versus broadcast communications. In: Ciobanu, G., Păun, G. (eds.) FCT 1999. LNCS, vol. 1684, pp. 258–268. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Gorla, D.: On the relative expressive power of asynchronous communication primitives. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006 and ETAPS 2006. LNCS, vol. 3921, pp. 47–62. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs (1985)MATHGoogle Scholar
  10. 10.
    Honda, K., Tokoro, M.: An object calculus for asynchronous communication. In: America, P. (ed.) ECOOP 1991. LNCS, vol. 512, pp. 133–147. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  11. 11.
    Lynch, N.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)MATHGoogle Scholar
  12. 12.
    Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)MATHGoogle Scholar
  13. 13.
    Milner, R.: Functions as processes. Mathematical Structures in Computer Science 2(2), 269–310 (1992)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Milner, R.: Communicating and Mobile Systems: the π-Calculus. Cambridge University Press, Cambridge (1999)Google Scholar
  15. 15.
    Milner, R., Parrow, J., Walker, D.: A calculus for mobile processes, parts I and II. Information and Computation 100(1), 1–77 (1992)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Milner, R., Sangiorgi, D.: Barbed Bisimulation. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 685–695. Springer, Heidelberg (1992)Google Scholar
  17. 17.
    Nestmann, U.: What is a ‘good’ encoding of guarded choice? Information and Computation 156, 287–319 (2000)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Nestmann, U.: Modeling consensus in a process calculus. In: Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 393–407. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  19. 19.
    Nestmann, U., Pierce, B.C.: Decoding Choice Encodings. Information and Computation 163(1), 1–59 (2000)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Palamidessi, C.: Comparing the expressive power of the synchronous and the asynchronous π-calculus. In: Proceedings of the 25th ACM Symposium on Principles of Programming Lnguages, pp. 256–265. ACM Press, New York (1997)Google Scholar
  21. 21.
    Palamidessi, C.: Comparing the expressive power of the synchronous and the asynchronous π-calculi. Mathematical Structures in Computer Science 13(5), 685–719 (2003)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Phillips, I.C.C.: CCS with priority guards. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 305–320. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  23. 23.
    Phillips, I.C.C., Vigliotti, M.G.: Symmetric electoral systems for ambient calculi (submitted)Google Scholar
  24. 24.
    Phillips, I.C.C., Vigliotti, M.G.: Electoral systems in ambient calculi. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 408–422. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  25. 25.
    Phillips, I.C.C., Vigliotti, M.G.: Leader election in rings of ambient processes. Theoretical Computer Science 356(3), 468–494 (2006)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Pierce, B.C., Turner, D.N.: Pict: A programming language based on the pi-calculus. In: Plotkin, G., Stirling, C., Tofte, M. (eds.) Proof, Language and Interaction: Essays in Honour of Robin Milner, pp. 455–494. MIT Press, Cambridge (2000)Google Scholar
  27. 27.
    Prasad, K.V.S.: Broadcast Calculus Interpreted in CCS up to Bisimulation. In: Proceedings of Express 2001. Electronic Notes in Theoretical Computer Science, vol. 52, pp. 83–100. Elsevier, Amsterdam (2002)Google Scholar
  28. 28.
    Sangiorgi, D.: Expressing Mobility in Process Algebra: First-Order and Higher-Order Paradigms. PhD thesis, University of Edinburgh (1993)Google Scholar
  29. 29.
    Sangiorgi, D., Walker, D.: The π-Calculus: a Theory of Mobile Processes. Cambridge University Press, Cambridge (2001)Google Scholar
  30. 30.
    Tel, G.: Distributed Algorithms. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  31. 31.
    Vigliotti, M.G.: Reduction Semantics for Ambient Calculi. PhD thesis, Imperial College London (2004)Google Scholar
  32. 32.
    Yoshida, N.: Graph Types for Monadic Mobile Process Calculi. In: Proceedings of 16th FST/TCS. LNCS, vol. 1180, pp. 371–386. Springer, Heidelberg (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Maria Grazia Vigliotti
    • 1
    • 3
  • Iain Phillips
    • 2
  • Catuscia Palamidessi
    • 3
    • 4
  1. 1.INRIA Sophia-AntipolisFrance
  2. 2.Department of ComputingImperial College LondonEngland
  3. 3.INRIA FutursFrance
  4. 4.LIX PolytechniqueFrance

Personalised recommendations