Advertisement

Fault Diagnosis with Dynamic Fuzzy Discrete Event System Approach

  • Erdal Kılıç
  • Çağlar Karasu
  • Kemal Leblebicioğlu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3949)

Abstract

Determining faults is a challenging task in complex systems. A discrete event system (DES) or a fuzzy discrete event system (FDES) approach with a fuzzy rule-base may resolve the ambiguity in a fault diagnosis problem especially in the case of multiple faults. In this study, an FDES approach with a fuzzy rule-base is used as a means of indicating the degree and priority of faults, especially in the case of multiple faults The fuzzy rule-base is constructed using event-fault relations. Fuzzy events occurring any time with different membership degrees are obtained using k-means clustering algorithm. The fuzzy sub-event sequences are used to construct super events. The study is concluded by giving some examples about the distinguishability of fault types (parameter, actuator) in an unmanned small helicopter.

Keywords

Fault Diagnosis Membership Degree Multiple Fault Discrete Event System Actuator Fault 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Willsky, A.S.: A survey of design methods for failure detection systems. Automatica 12, 601–611 (1976)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Isermann, R.: Supervision, fault-detection and fault diagnosis methods-an introduction. Control Eng. Practice 5(5), 639–652 (1997)CrossRefGoogle Scholar
  3. 3.
    Ayoubi, M., Isermann, R.: Neuro-fuzzy systems for diagnosis. Fuzzy Sets and Systems 89, 289–307 (1997)CrossRefGoogle Scholar
  4. 4.
    Karasu, Ç.: Small-sized unmanned model helicopter guidance and control. M.Sc. thesis, Middle East Technical University Ankara Turkey (November 2004)Google Scholar
  5. 5.
    Vinay, B., et al.: Diagnosis of helicopter gearboxes using structure-based networks. In: Proc.of the American Control Conference, Seattle Washington, June, pp. 1623–1627 (1995)Google Scholar
  6. 6.
    Constantino, R., et al.: Failure detection and identification and fault tolerant control using the IMM-KF with applications to the Eagle-Eye UAV. In: Proceedings of the 37th IEEE Conference on Decision & Control, Tampa Florida USA, December 1998, pp. 4208–4213 (1998)Google Scholar
  7. 7.
    Sampath, M., et al.: Failure diagnosis using discrete event models. IEEE Trans. on CST 4(2), 105–124 (1996)Google Scholar
  8. 8.
    Prock, J.: A new technique for fault detection using Petri nets. Automatica 27(2), 239–245 (1991)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Zadeh, L.A.: Fuzzy sets. Inform. Control 8, 338–353 (1965)CrossRefMATHGoogle Scholar
  10. 10.
    Santos, E.S.: Max-min automata. Inform. Control 13, 363–377 (1968)CrossRefGoogle Scholar
  11. 11.
    Passino, K.M., Yurkovich, S.: Fuzzy Control. Addison Wesley Longman Inc., Amsterdam (1998)MATHGoogle Scholar
  12. 12.
    Lin, F., Ying, H.: Modelling and control of fuzzy discrete event systems. IEEE Trans. on Syst. Man and Cybernetics 32(4), 408–415 (2002)CrossRefGoogle Scholar
  13. 13.
    Wang, W.: Identification of gear mesh signals by Kurtosis maximisation and its application to CH46 helicopter gearbox data. In: Proceeding of the 11th IEEE signal processing workshop on statistical signal processing, August 6-8, 2001, pp. 369–372 (2001)Google Scholar
  14. 14.
    Yu, X.H.: Actuator fault compensation for a helicopter model. In: Proceedings of IEEE Conference on Control Applications, vol. 1, pp. 1372–1374 (2003)Google Scholar
  15. 15.
    Amulya, K., et al.: Hybrid reasoning for prognostic learning in CBM sytems. In: IEEE Aerospace Conference Proceedings, March 10-17, vol. 6, pp. 2957–2969 (2001)Google Scholar
  16. 16.
    Cassandrass, C.G., Lafortune, S.: Introduction to Discrete Event Systems. Kluwer, Boston (1999)CrossRefGoogle Scholar
  17. 17.
    Isermann, R., Ballĕ, P.: Trends in the application of model-based fault detection and diagnosis of technical processes. Control Eng. Practice 5(5), 709–719 (1997)CrossRefGoogle Scholar
  18. 18.
    Fuessel, D., Isermann, R.: Hierarchical motor diagnosis utilizing structural knowledge and self-learning neuro-fuzzy scheme. IEEE Trans. on Industrial Electronics 47(5) (October 2000)Google Scholar
  19. 19.
    Isermann, R.: On fuzzy logic applications for automatic control, supervision and fault diagnosis. IEEE Trans. on Systems, Man and Cybernetics – Part A: Systems and Humans 28(2), 221–235 (1998)CrossRefGoogle Scholar
  20. 20.
    Wen, F., Deb, S.: Signal processing and fault detection with application to CH-46 helicopter data. In: IEEE Aerospace Conference Proceedings, March 18-25, 2000, vol. 6, pp. 15–26 (2000)Google Scholar
  21. 21.
    Dubois, D., Prade, H.: Fuzzy set-based methods in instance-based reasoning. IEEE Trans. on Fuzzy Systems 10(3), 322–332 (2002)CrossRefGoogle Scholar
  22. 22.
    Cayrac, D., Dubois, D., Prade, H.: Handling uncertainty with possibility theory and fuzzy sets in a satellite fault diagnosis application. IEEE Trans. on Fuzzy Systems 4(3), 251–269 (1996)CrossRefGoogle Scholar
  23. 23.
    Ulieru, M.: Fuzzy logic in diagnostic decision: Probabilistic networks. Ph.D. dissertation, Technical University of Darmstadt, Germany (1996)Google Scholar
  24. 24.
    Wang, H., et al.: A framework of fuzzy diagnosis. IEEE Trans. on Knowledge and Data Eng. 16(12), 1571–1582 (2004)CrossRefGoogle Scholar
  25. 25.
    Ying, H., et al.: A fuzzy discrete event system for HIV/AIDS treatment planning. In: IEEE International Conf. on Fuzzy Systems, Budapest, Hungary, vol. 25-29, pp. 197–202 (July 2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Erdal Kılıç
    • 1
  • Çağlar Karasu
    • 2
  • Kemal Leblebicioğlu
    • 1
  1. 1.Electrical and Electronic Engineering Department Computer Vision and Intelligent Systems LaboratoryMiddle East Technical UniversityAnkaraTurkey
  2. 2.Tübitak, SageAnkaraTurkey

Personalised recommendations