Advertisement

Interoperability Through Emergent Semantics A Semiotic Dynamics Approach

  • Luc Steels
  • Peter Hanappe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4090)

Abstract

We study the exchange of information in collective information systems mediated by information agents, focusing specifically on the problem of semantic interoperability. We advocate the use of mechanisms inspired from natural language, that enable each agent to develop a repertoire of grounded categories and labels for these categories and negotiate their use with other agents. The communication system as well as its semantics is hence emergent and adaptive instead of predefined. It is the result of a self-organised semiotic dynamics where relations between data, labels for the data, and the categories associated with the labels undergo constant evolution.

Keywords

Lateral Inhibition Conceptual Schema Collective Information System Female Voice Semantic Interoperability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aberer, K., et al.: Emergent Semantics. Principles and Issues. In: Proc. of the International Conference on Semantics of a Networked World (to appear, 2003), www.ipsi.fraunhofer.de/~risse/pub/P2004-01.pdf
  2. 2.
    Aberer, K., et al.: The Chatty Web: Emergent Semantics through Gossiping. In: Proceedings of the 12th World Wide Web Conference (2003), citeseer.ist.psu.edu/aberer03chatty.html
  3. 3.
    Agostini, A., Avesani, P.: A Peer-to-Peer Advertising game. In: Orlowska, M.E., Weerawarana, S., Papazoglou, M.P., Yang, J. (eds.) ICSOC 2003. LNCS, vol. 2910, pp. 28–42. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American (May 2001)Google Scholar
  5. 5.
    Davies, J., Fensel, D., van Harmelen, F.: Towards the semantic web: Ontology driven knowledge management. John Wiley & Sons, Chichester (2003)Google Scholar
  6. 6.
    Leach, P., Mealling, M., Salz, R.: A UUID URN Namespace. The Internet Engineering Task Force. Internet drafts (2004), http://www.ietf.org/internet-drafts/draft-mealling-uuid-urn-03.txt
  7. 7.
    Lenat, D., Miller, G.A., Yokoi, T.: CYC, WordNet and EDR — critiques and responses — discussion. Communications of the ACM 38 (11), 45–48 (November 1995), http://www.acm.org/pubs/articles/journals/cacm/1995-38-11/p24-lenat/p45-lenat.pdf
  8. 8.
    Nejdl, W., et al.: RDF-based Peer-to-Peer-Networks for Distributed (Learning) Repositories. VLDB journal (2003), www.kbs.uni-hannover.de/Arbeiten/Publikationen/2002/
  9. 9.
    Rahm, E., Bernstein, P.A.: A Survey of Approaches to Automatic Schema Matching. VLDB Journal: Very Large Data Bases 10, 334–350 (2001), http://citeseer.ist.psu.edu/rahm01survey.html zbMATHCrossRefGoogle Scholar
  10. 10.
    Santini, S., Gupta, A., Jain, R.: Emergent Semantics Through Interaction. In: Image Databases IEEE Transaction of Knowledge and Data Engineering (Summer 2001), www.sdsc.edu/~gupta/publications/kde-sp-01.pdf
  11. 11.
    Staab, S.: Emergent Semantics. IEEE Intelligent Systems, 78–86 (2002), www.cwi.nl/~media/publications/nack-ieee-intsys-2002.pdf
  12. 12.
    Steels, L.: The Origins of Ontologies and Communication Conventions in Multi-Agent Systems. Autonomous Agents and Multi-Agent Systems 1(1), 169–194 (1998), http://www3.isrl.uiuc.edu/~junwang4/langev/localcopy/pdf/steels98theOrigins.pdf CrossRefGoogle Scholar
  13. 13.
    Steels, L.: Emergent Semantics. IEEE Intelligent Systems. Trends and Controversies, pp. 83–85 (2002), http://www.cwi.nl/~media/publications/nack-ieee-intsys-2002.pdf
  14. 14.
    Steels, L.: Evolving grounded communication for robots. Trends in Cognitive Science 7(7), 308–312 (2003), www.csl.sony.fr/downloads/papers/2003/steels-03c.pdf CrossRefGoogle Scholar
  15. 15.
    Steels, L., Kaplan, F.: Collective learning and semiotic dynamics. In: Floreano, D., Mondada, F. (eds.) ECAL 1999. LNCS, vol. 1674, pp. 679–688. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  16. 16.
    Tzitzikas, Y., Meghini, C.: Ostensive Automatic Schema Mapping for Taxonomy-based Peer-to-Peer Systems. In: Klusch, M., Omicini, A., Ossowski, S., Laamanen, H. (eds.) CIA 2003. LNCS (LNAI), vol. 2782, pp. 78–92. Springer, Heidelberg (2003), http://www.csi.forth.gr/~tzitzik/publications/Tzitzikas_CIA_2003.pdf CrossRefGoogle Scholar
  17. 17.
    Zhang, H., Croft, B., Levine, B., Lesse, V.: A Multi-agent Approach for Peer-to-Peer based Information Retrieval System. In: Proceedings of the 2004 Multi-Agent Conference, AAMAS, New York (2004), http://www.aamas2004.org/proceedings/057_zhangh-p2pir.pdf
  18. 18.
    Zils, A., Pachet, F.: Automatic Extraction of Music Descriptors from Acoustic Signals using EDS. In: Proceedings of the 116th AES Convention (May 2004), http://www.downloads.papers.uploads.zils-04a.pdf
  19. 19.
    Wiederhold, G.: Mediators in the Architecture of Future Information Systems. IEEE Computer, 38–49 (March 1992), http://www-db.stanford.edu/pub/gio/1991/afis.ps

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Luc Steels
    • 1
    • 2
  • Peter Hanappe
    • 1
  1. 1.Sony Computer Science LaboratoryParisFrance
  2. 2.Vrije Universiteit BrusselBrusselsBelgium

Personalised recommendations