Intensional Semantics for P2P Data Integration

  • Zoran Majkić
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4090)


One of the main issue in formalizing the Peer-To-Peer (P2P) database systems is the semantic characterization of P2P mappings. Each peer must be robust enough in order to take in account the incomplete and locally inconsistent information of its source databases, typical in Web applications. We consider a peer as a local epistemic logic system with its own belief, independent from other peers and their own beliefs. The traditional extensional semantics for mappings between peers destroys such epistemic independence of peers: the beliefs of other peers (also when change dynamically) are locally introduced into a given peer, so that its own belief depends directly and automatically from other peers. Moreover, the information that one peer provides to another peer may be inconsistent with the information known by the later. This motivates the need of a new, alternative semantic characterization of P2P mappings based not on the extension but on the meaning of concepts used in the mappings. We present a novel proposal, based on intensional logic, and show that it adequately models this weakly-coupled framework and supports decidable query answering.


Data Integration Global Schema Integrity Constraint User Query Conjunctive Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ushold, M.: Where is the semantics in the semantic web. In: Workshop on Ontologies in Agent Systems (OAS) at the 5th International Conference on Autonomous Agents (2001)Google Scholar
  2. 2.
    Gribble, S., Halevy, A., Ives, Z., Rodrig, M., Suciu, D.: What can databases do for Peer-to-Peer? In: WebDB Workshop on Databases and the Web (2001)Google Scholar
  3. 3.
    Serafini, L., Giunchiglia, F., Mylopoulos, J., Bernstein, P.A.: The local relational model: Model and proof theory, Technical Report 0112-23, ITC-IRST (2001)Google Scholar
  4. 4.
    Ghidini, C., Giunchiglia, F.: Local models semantics or contextual reasoning = locality + compatibility. Artificial Intelligence 127, 221–259 (2001)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Reiter, R.: Towards a logical reconstruction of relational database theory. In: Brodie, M.L., Mylopoulos, J., Schmidt, J.W. (eds.) On Conceptual Modeling: Perspectives from Artificial Intelligence Databases and Programming Languages. Springer, Heidelberg (1984)Google Scholar
  6. 6.
    Franconi, E., Kuper, G., Lopatenko, A., Serafini, L.: A robust logical and computational characterization of Peer-to-Peer data systems, Technical Report DIT-03-051, University of Trento, Italy (September 2003)Google Scholar
  7. 7.
    Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Logical foundations of Peer-to-Peer data integration. In: PODS 2004, Paris, France, June 14-16, 2004, (2004)Google Scholar
  8. 8.
    Majkić, Z.: Weakly-coupled ontology integration of P2P database systems. In: 1st Int. Workshop on Peer-to-Peer Knowledge Management (P2PKM), Boston, USA, August 22 (2004)Google Scholar
  9. 9.
    Lenzerini, M.: Data integration: A theoretical perspective. In: Proc. of the 21st ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS 2002), pp. 233–246 (2002)Google Scholar
  10. 10.
    Lenzerini, M., Majkić, Z.: General framework for query reformulation. In: Semantic Webs and Agents in Integrated Economies, D3.1, IST-2001-34825 (February 2003)Google Scholar
  11. 11.
    Calvanese, D., Damaggio, E., De Giacomo, G., Lenzerini, M., Rosati, R.: Semantic data integration in P2P systems. In: Proc. of the Int. Workshop On Databases, Inf. Systems and P2P Computing, Berlin, Germany (September 2003)Google Scholar
  12. 12.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Inconsistency tollerance in P2P data integration: an epistemic approach. In: Bierman, G., Koch, C. (eds.) DBPL 2005. LNCS, vol. 3774, pp. 90–105. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Majkić, Z.: Weakly-coupled P2P system with a network repository. In: 6th Workshop on Distributed Data and Structures (WDAS 2004), Lausanne, Switzerland, July 5-7 (2004)Google Scholar
  14. 14.
    Majkić, Z.: Massive parallelism for query answering in weakly integrated P2P systems. In: Workshop GLOBE 2004, Zaragoza, Spain, August 30–September 3 (2004)Google Scholar
  15. 15.
    Catarci, T., Lenzerini, M.: Representing and using interschema knowledge in cooperative information systems. J. of Intelligent and Cooperative Information Systems 2(4), 375–398 (1993)CrossRefGoogle Scholar
  16. 16.
    Majkić, Z.: Intensional logic and epistemic independency of intelligent database agents. In: 2nd International Workshop on Philosophy and Informatics (WSPI 2005), Kaiserslautern, Germany, April 10-13 (2005)Google Scholar
  17. 17.
    Arenas, M., Bertossi, L.E., Chomicki, J.: Consistent query answers in inconsistent databases. In: Proc. of the 18th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS 1999), pp. 68–79 (1999)Google Scholar
  18. 18.
    Greco, G., Greco, S., Zumpano, E.: A logic programming approach to the integration, repairing and querying of inconsistent databases. In: Codognet, P. (ed.) ICLP 2001. LNCS, vol. 2237, pp. 348–364. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  19. 19.
    Majkić, Z.: Autoepistemic logic programming for reasoning with inconsistency. In: Hill, P.M. (ed.) LOPSTR 2005. LNCS, vol. 3901. Springer, Heidelberg (2006)Google Scholar
  20. 20.
    Montague, R.: Universal grammar. Theoria 36, 373–398 (1970)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Montague, R.: The proper treatment of quantification in ordinary English. In: Hintikka, J., et al. (eds.) Approaches to Natural Language. Reidel, Dordrecht, pp. 221–242 (1973)Google Scholar
  22. 22.
    Montague, R.: Formal philosophy. Selected papers of Richard Montague. In: Thomason, R. (ed.), pp. 108–221. Yale University Press, New Haven, London (1974)Google Scholar
  23. 23.
    Davidson, D.: Truth and meaning. Philosophical Logic. Reidel, Dodrecht (1969)Google Scholar
  24. 24.
    Berners-Lee, T., Hendlar, J., Lassila, O.: The semantic web. Scientific American 279 (2001)Google Scholar
  25. 25.
    Fensel, D.: Ontologies: A Silver Bullet for Knowledge Management and Electronic Commerce. Springer, Heidelberg (2001)MATHGoogle Scholar
  26. 26.
    Lenzerini, M., Majkić, Z.: First release of the system prototype for query management. In: Semantic Webs and Agents in Integrated Economies, D3.3 (2003) IST-2001-34825Google Scholar
  27. 27.
    Lenzerini, M., Calvanese, D., De Giacomo, G., Calì, A.: Data Integration under Integrity Constraints. In: Pidduck, A.B., Mylopoulos, J., Woo, C.C., Ozsu, M.T. (eds.) CAiSE 2002. LNCS, vol. 2348, pp. 262–279. Springer, Heidelberg (2002)Google Scholar
  28. 28.
    Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: DATA Exchange: Semantics and query answering. In: Calvanese, D., Lenzerini, M., Motwani, R. (eds.) ICDT 2003. LNCS, vol. 2572, pp. 207–224. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  29. 29.
    Reiter, R.: What should a database know? J. of Logic Programming 14, 127–153 (1990)CrossRefMathSciNetGoogle Scholar
  30. 30.
    Johnson, D.S., Klug, A.C.: Testing containment of conjunctive queries under functional and inclusion dependencies. J. of Computer and System Sciences 28(1), 167–189 (1984)MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Levy, A., Mendelzon, A., Sagiv, Y.: Answering queries using views. In: Proc. 14th ACM Symp. on Principles of Database Systems, pp. 95–104 (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Zoran Majkić
    • 1
  1. 1.University of MarylandCollege ParkUSA

Personalised recommendations