Advertisement

A Surface Displaced from a Manifold

  • Seung-Hyun Yoon
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4077)

Abstract

We present a new surface representation scheme based on a manifold structure and displacement functions. Given a geometric model represented as a point cloud, we construct a domain manifold which is a smooth surface blended from simple local patches. The original points are then projected on to the local patches and their displacements are adjusted so that the final displaced surface approximates the given point data with high precision. We demonstrate the effectiveness of our approach in various applications, including multi-resolution representations and skeleton-driven shape deformation.

Keywords

Point Cloud Displacement Function Local Patch Point Cloud Data Subdivision Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cook, R.: Shade trees. In: Proceedings of ACM SIGGRAPH, pp. 223–231 (1984)Google Scholar
  2. 2.
    Cotrina, J., Pla, N.: Modeling surfaces from planar irregular meshes. Computer Aided Geometric Design 17(1), 1–15 (2000)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Cotrina, J., Pla, N., Vingo, M.: A generic approach to free form surface generation. In: Proceedings of the ACM Symposium on Solid Modeling and Applications, pp. 35–44 (2002)Google Scholar
  4. 4.
    Eck, M., DeRose, T., Duchamp, H., Lounsbery, M., Stuetzle, W.: Multiresolution analysis of arbitrary meshes. In: Proceedings of ACM SIGGRAPH, pp. 303–312 (1995)Google Scholar
  5. 5.
    Grim, C.: Simple manifolds for surface modeling and parameterization. In: Proceedings of Shape Modeling International, vol. 237 (2002)Google Scholar
  6. 6.
    Grim, C., Crisco, J., Laidlaw, D.: Fitting manifold surfaces to 3D point clouds. Journal of Biomechanical Engineering 124(1), 136–140 (2002)CrossRefGoogle Scholar
  7. 7.
    Grim, C., Hughes, J.: Modeling surfaces of arbitrary topology using manifolds. In: Proceedings of ACM SIGGRAPH, pp. 359–368 (1995)Google Scholar
  8. 8.
    Gu, X., He, Y., Qin, H.: Manifold spline. In: Proceedings of the ACM Symposium and Solid and Physical Modeling, pp. 27–38 (2005)Google Scholar
  9. 9.
    Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Surface reconstruction from unorganized points. In: Proceedings of ACM SIGGRAPH, pp. 71–78 (1992)Google Scholar
  10. 10.
    Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Mesh optimization. In: Proceedings of ACM SIGGRAPH, pp. 19–26 (1993)Google Scholar
  11. 11.
    Hyun, D.-E., Yoon, S.-H., Chang, J.-W., Seong, J.-K., Kim, M.-S., Jüttler, B.: Sweep-based human deformation. The Visual Computer 21(8), 542–550 (2005)CrossRefGoogle Scholar
  12. 12.
    INUS TECHNOLOGY. RapidForm Users Manual (2006)Google Scholar
  13. 13.
    Jeong, W.-K., Kim, C.-H.: Direct reconstruction of displaced subdivision surface from unorganized points. Graphical Models 64 2, 78–93 (2002)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Kim, S.-J., Kim, C.-H.: Point cloud approximation by displaced butterfly subdivision surfaces. In: Proceedings of Israel-Korea Bi-National Conference, pp. 5–10 (2005)Google Scholar
  15. 15.
    Krishnamurthy, V., Levoy, M.: Fitting smooth surface to dense polygon meshes. In: Proceedings of ACM SIGGRAPH, pp. 313–324 (1996)Google Scholar
  16. 16.
    Lee, A., Moreton, H., Hoppe, H.: Displaced subdivision surfaces. In: Proceedings of ACM SIGGRAPH, pp. 85–94 (2000)Google Scholar
  17. 17.
    Lee, S.-Y., Wolberg, G., Shin, S.-Y.: Scattered data interpolation with multilevel B-splines. IEEE Transactions on Visualization and Computer Graphics 3(3), 228–244 (1997)CrossRefGoogle Scholar
  18. 18.
    Press, W.-H., Teukolsky, S.-A., Vetterling, W.-T., Flannery, B.-P.: Numerical Recipes in C. Cambridge University Press, Cambridge (1992)MATHGoogle Scholar
  19. 19.
    Ying, L., Zorin, D.: A simple manifold-based construction of surfaces of arbitrary smoothness. In: Proceedings of ACM SIGGRAPH, pp. 271–275 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Seung-Hyun Yoon
    • 1
  1. 1.Computer Science and EngineeringSeoul National UniversityKorea

Personalised recommendations