Time-Varying Volume Geometry Compression with 4D Lifting Wavelet Transform

  • Yan Wang
  • Heba Hamza
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4077)


Geometry compression is an effective way to distribute high-volume geometry data within limited bandwidth and storage capacity. In this paper, a new time-varying 3D geometry compression method based on 4D lifted wavelet transform is presented. In this hybrid approach, geometric information and animation are compressed based volume grid values. Isosurfaces are reconst-ructed from decompressed grid values. With rescaling and integer-to-integer lifting, compression ratio is significantly increased without compromising quality of surfaces.


Compression Ratio Motion Vector Motion Compensation File Size Compression Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alliez, P., Gotsman, C.: Recent advances in compression of 3D meshes. In: Proc. Symp. on Mutiresolution in Geometric Modeling (2003)Google Scholar
  2. 2.
    Peng, J., Kim, C.-S., Kuo, C.-C.J.: Technologies for 3D mesh compression: A survey. J. Visual Communication & Image Representation 16, 688–733 (2005)CrossRefGoogle Scholar
  3. 3.
    Taubin, G., Horn, W., Lazarus, F., Rossignac, J.: Geometry coding and VRML. Proc. the IEEE 96, 1228–1243 (1998)CrossRefGoogle Scholar
  4. 4.
    Muraki, S.: Volume data and wavelet transforms. IEEE CG&A 13, 50–56 (1993)Google Scholar
  5. 5.
    Nielson, G.M., Brunet, P., Gross, M., Hagen, H., Klimenko, S.V.: Research issues in data modeling for scientific visualization. IEEE CG&A 14, 70–73 (1994)Google Scholar
  6. 6.
    Lengyel, J.: Compression of time dependent geometry. In: Proc. 1999 ACM Symp. on Interactive 3D Graphics, pp. 89–95 (1999)Google Scholar
  7. 7.
    Ahn, J.-H., Kim, C.-S., Kuo, C.-C.J., Ho, Y.-S.: Motion-compensated compression of 3D animation models. IEE Elec. Lett. 37, 1445–1446 (2001)CrossRefGoogle Scholar
  8. 8.
    Alexa, M., Müller, W.: Representing animations by principle components. Computer Graphics Forum 19, 411–418 (2000)CrossRefGoogle Scholar
  9. 9.
    Sattler, M., Sarlette, R., Klein, R.: Simple and efficient compression of animation sequences. In: Proc. EUROGRAPHICS 2005, pp. 209–217 (2005)Google Scholar
  10. 10.
    Ibarria, L., Rossignac, J.: Dynapack: space-time compression of the 3D animations of triangle meshes with fixed connectivity. In: Proc. EUROGRAPHICS 2003, pp. 126–135 (2003)Google Scholar
  11. 11.
    Karni, Z., Gotsman, C.: Compression of soft-body animation sequences. Computers & Graphics 28, 25–34 (2004)CrossRefGoogle Scholar
  12. 12.
    Briceño, H.M., Sander, P.V., McMillan, L., Gortler, S., Hoppe, H.: Geometry videos: A new representation for 3D animations. In: Proc. EUROGRAPHICS 2003, pp. 136–146 (2003)Google Scholar
  13. 13.
    Guskov, I., Khodakovsky, A.: Wavelet compression of parametrically coherent mesh sequences. In: Proc. EUROGRAPHICS 2004, pp. 183–192 (2004)Google Scholar
  14. 14.
    Ma, K.-L., Smith, D., Shih, M.-Y., Shen, H.-W.: Efficient encoding and rendering of time-varying volume data. NASA/CR-1998-208424 ICASE Report No.98-22 (1998)Google Scholar
  15. 15.
    Guthe, S., Strasser, W.: Real-time decompression and visualization of animated volume data. In: Proc. IEEE Visualization 2001, pp. 349–356 (2001)Google Scholar
  16. 16.
    Sohn, B.-S., Bajaj, C., Siddavanahalli, V.: Volumetric video compression for interactive playback. Comp. Vis. & Image Understanding 96, 435–452 (2004)CrossRefGoogle Scholar
  17. 17.
    Sweldens, W.: The lifting scheme: A custom-design construction of biorthogonal wavelets. Appl. & Comp. Harmonic Analysis 3, 186–200 (1996)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Calderbank, A.R., Daubechies, I., Sweldens, W., Yeo, B.-L.: Lossless image compression using integer to integer wavelet transforms. In: Proc. IEEE Int. Conf. Image Processing, pp. 596–599 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yan Wang
    • 1
  • Heba Hamza
    • 1
  1. 1.NSF Center for e-DesignUniversity of Central FloridaOrlandoUSA

Personalised recommendations