Feature Detection Using Curvature Maps and the Min-cut/Max-flow Algorithm

  • Timothy Gatzke
  • Cindy Grimm
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4077)


Automatic detection of features in three-dimensional objects is a critical part of shape matching tasks such as object registration and recognition. Previous approaches often required some type of user interaction to select features. Manual selection of corresponding features and subjective determination of the difference between objects are time consuming processes requiring a high level of expertise. The Curvature Map represents shape information for a point and its surrounding region and is robust with respect to grid resolution and mesh regularity. It can be used as a measure of local surface similarity. We use these curvature map properties to extract feature regions of an object. To make the selection of the feature region less subjective, we employ a min-cut/max-flow graph cut algorithm with vertex weights derived from the curvature map property. A multi-scale approach is used to minimize the dependence on user defined parameters. We show that by combining curvature maps and graph cuts in a multi-scale framework, we can extract meaningful features in a robust way.


Feature Detection Shape Match Reeb Graph Object Registration Brown Medical School 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gatzke, T., Zelinka, S., Grimm, C., Garland, M.: Curvature maps for local shape comparison. In: Shape Modeling International, pp. 244–256 (2005)Google Scholar
  2. 2.
    Gatzke, T.D., Grimm, C.M.: Feature detection using curvature maps and the min-cut/max-flow graph cut algorithm. Technical Report WUCSE-2006-22, Washington University, St. Louis Missouri (2006)Google Scholar
  3. 3.
    van den Elsen, P., Maintz, J., Pol, E., Viergever, M.: Medical image matching - a review with classification. In: IEEE Engineering in Medicine and Biology, pp. 26–39 (1993)Google Scholar
  4. 4.
    Bloomenthal, J., Lim, C.: Skeletal methods of shape manipulation. In: International Conference on Shape Modeling and Applications, p. 44 (1999)Google Scholar
  5. 5.
    Klein, P.N., Sebastian, T.B., Kimia, B.B.: Shape matching using edit-distance: an implementation. In: Symposium on Discrete Algorithms, pp. 781–790 (2001)Google Scholar
  6. 6.
    Hilaga, M., Schinagawa, Y., Kohmura, T., Kuni, T.L.: Topology matching for fully automatic similarity estimation of 3d shapes. In: Computer Graphics (SIGGRAPH), pp. 203–212 (2001)Google Scholar
  7. 7.
    Besl, P.J., McKay, N.D.: A method for registration of 3-d shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(2), 239–256 (1992)CrossRefGoogle Scholar
  8. 8.
    Rusinkiewicz, S., Levoy, M.: Efficient variants of the icp algorithm. In: Third International Conference on 3D Digital Imaging and Modeling (3DIM), pp. 145–152 (2001)Google Scholar
  9. 9.
    Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D.: Shape distributions. ACM Transactions on Graphics 21(4), 807–832 (2002)CrossRefGoogle Scholar
  10. 10.
    Johnson, A., Hebert, M.: Recognizing objects by matching oriented points. In: CVPR 1997, pp. 684–689 (1997)Google Scholar
  11. 11.
    Ruiz-Correa, S., Shapiro, L.G., Meila, M.: A new signature-based method for efficient 3-d object recognition. In: CVPR (1), pp. 769–776 (2001)Google Scholar
  12. 12.
    Planitz, B.M., Maeder, A.J., Williams, J.A.: Intrinsic correspondence using statistical signature-based matching for 3d surfaces. In: Australian Pattern Recognition Society (APRS) Workshop on Digital Image Computing (WDIC) (2003)Google Scholar
  13. 13.
    Mori, G., Belongie, S., Malik, J.: Shape contexts enable efficient retrieval of similar shapes. In: CVPR 1, pp. 723–730 (2001)Google Scholar
  14. 14.
    Sun, Y., Paik, J.K., Koschan, A., Page, D.L., Abidi, M.A.: Point fingerprint: A new 3-d object representation scheme. IEEE Trans. Systems, Man, and Cybernetics, Part B 33(4), 712–717 (2003)CrossRefGoogle Scholar
  15. 15.
    Yamany, S.M., Farag, A.A.: Surface signatures: An orientation independent free-form surface representation scheme for the purpose of objects registration and matching. IEEE Trans. Pattern Anal. Mach. Intell. 24(8), 1105–1120 (2002)CrossRefGoogle Scholar
  16. 16.
    Takahashi, S., Ohta, N., Nakamura, H., Takeshima, Y., Fujishiro, I.: Modeling surperspective projection of landscapes for geographical guide-map generation. Computer Graphics Forum 21(3), 259–268 (2002)CrossRefGoogle Scholar
  17. 17.
    Mortara, M., Patanè, G., Spagnuolo, M., Falcidieno, B., Rossignac, J.: Blowing bubbles for multi-scale analysis and decomposition of triangle meshes. Algorithmica 38(1), 227–248 (2003)CrossRefGoogle Scholar
  18. 18.
    Maintz, J.B.A., van den Elsen, P.A., Viergever, M.A.: Registration of 3d medical images using simple morphological tools. In: IPMI, pp. 204–217 (1997)Google Scholar
  19. 19.
    McIvor, A.M., Penman, D.W., Waltenberg, P.T.: Simple surface segmentation. In: DICTA/IVCNZ97, Massey University, New Zealand, pp. 141–146 (1997)Google Scholar
  20. 20.
    Vivodtzev, F., Linsen, L., Bonneau, G.P., Hamann, B., Joy, K.I., Olshausen, B.A.: Hierarchical isosurface segmentation based on discrete curvature. In: Proceedings of VisSym 2003- Data Visualization 2003, pp. 249–258. ACM Press, New York (2003)Google Scholar
  21. 21.
    Mangan, A.P., Whitaker, R.T.: Partitioning 3d surface meshes using watershed segmentation. IEEE Transactions on Visualization and Computer Graphics 5(4), 308–321 (1999)CrossRefGoogle Scholar
  22. 22.
    Page, D.L., Koschan, A.F., Abidi, M.A.: Perception-based 3d triangle mesh segmentation using fast marching watersheds. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2003), vol. 2, pp. 27–32 (2003)Google Scholar
  23. 23.
    Gal, R., Cohen-Or, D.: Salient geometric features for partial shape matching and similarity. j-TOG 25(1), 130–150 (2006)CrossRefGoogle Scholar
  24. 24.
    Lee, C.H., Varshney, A., Jacobs, D.W.: Mesh saliency. Trans. Graph. 24(3), 659–666 (2005)CrossRefGoogle Scholar
  25. 25.
    Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26(9), 1124–1137 (2004)CrossRefGoogle Scholar
  26. 26.
    Boykov, Y., Jolly, M.P.: Interactive organ segmentation using graph cuts. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 276–286. Springer, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Timothy Gatzke
    • 1
  • Cindy Grimm
    • 1
  1. 1.Washington University in St. LouisSt. LouisUSA

Personalised recommendations