Manifold T-Spline

  • Ying He
  • Kexiang Wang
  • Hongyu Wang
  • Xianfeng Gu
  • Hong Qin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4077)


This paper develops the manifold T-splines, which naturally extend the concept and the currently available algorithms/techniques of the popular planar tensor-product NURBS and T-splines to arbitrary manifold domain of any topological type. The key idea is the global conformal parameterization that intuitively induces a tensor-product structure with a finite number of zero points, and hence offering a natural mechanism for generalizing the tensor-product splines throughout the entire manifold. In our shape modeling framework, the manifold T-splines are globally well-defined except at a finite number of extraordinary points, without the need of any tedious trimming and patching work. We present an efficient algorithm to convert triangular meshes to manifold T-splines. Because of the natural, built-in hierarchy of T-splines, we can easily reconstruct a manifold T-spline surface of high-quality with LOD control and hierarchical structure.


Control Point Conformal Structure NURBS Surface Critical Graph Arbitrary Topology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eck, M., Hoppe, H.: Automatic reconstruction of b-spline surfaces of arbitrary topological type. In: Proceedings of SIGGRAPH 1996, pp. 325–334 (1996)Google Scholar
  2. 2.
    Krishnamurthy, V., Levoy, M.: Fitting smooth surfaces to dense polygon meshes. In: Proceedings of SIGGRAPH 1996, pp. 313–324 (1996)Google Scholar
  3. 3.
    Sederberg, T.W., Zheng, J., Bakenov, A., Nasri, A.H.: T-splines and t-nurccs. ACM Trans. Graph. 22, 477–484 (2003)CrossRefGoogle Scholar
  4. 4.
    Gu, X., He, Y., Qin, H.: Manifold splines. In: Proceedings of ACM Symposium on Solid and Physical Modeling (SPM 2005), pp. 27–38 (2005)Google Scholar
  5. 5.
    Forsey, D.R., Bartels, R.H.: Hierarchical b-spline refinement. In: SIGGRAPH 1988: Proceedings of the 15th annual conference on Computer graphics and interactive techniques, pp. 205–212. ACM Press, New York (1988)CrossRefGoogle Scholar
  6. 6.
    Gonzalez-Ochoa, C., Peters, J.: Localized-hierarchy surface splines (less). In: SI3D 1999: Proceedings of the 1999 symposium on Interactive 3D graphics, pp. 7–15. ACM Press, New York (1999)CrossRefGoogle Scholar
  7. 7.
    Yvart, A., Hahmann, S., Bonneau, G.P.: Smooth adaptive fitting of 3d models using hierarchical triangular splines. In: SMI 2005: Proceedings of the International Conference on Shape Modeling and Applications 2005 (SMI 2005), pp. 13–22 (2005)Google Scholar
  8. 8.
    Sederberg, T.W., Cardon, D.L., Finnigan, G.T., North, N.S., Zheng, J., Lyche, T.: T-spline simplification and local refinement. ACM Trans. Graph. 23, 276–283 (2004)CrossRefGoogle Scholar
  9. 9.
    Peters, J.: Surfaces of arbitrary topology constructed from biquadratics and bicubics. In: Designing fair curves and surfaces, pp. 277–293. SIAM, Philadelphia (1994)Google Scholar
  10. 10.
    Hahmann, S., Bonneau, G.-P.: Polynomial surfaces interpolating arbitrary triangulations. IEEE Transactions on Visualization and Computer Graphics 9, 99–109 (2003)CrossRefGoogle Scholar
  11. 11.
    Loop, C.: Smooth spline surfaces over irregular meshes. In: SIGGRAPH 1994: Proceedings of the 21st annual conference on Computer graphics and interactive techniques, pp. 303–310 (1994)Google Scholar
  12. 12.
    Grimm, C., Hughes, J.F.: Modeling surfaces of arbitrary topology using manifolds. In: SIGGRAPH, pp. 359–368 (1995)Google Scholar
  13. 13.
    Cotrina, J., Pla, N.: Modeling surfaces from meshes of arbitrary topology. Computer Aided Geometric Design 17, 643–671 (2000)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Cotrina, J., Pla, N., Vigo, M.: A generic approach to free form surface generation. In: SMA 2002: Proceedings of the seventh ACM symposium on Solid modeling and applications, pp. 35–44 (2002)Google Scholar
  15. 15.
    Ying, L., Zorin, D.: A simple manifold-based construction of surfaces of arbitrary smoothness. ACM Trans. Graph. 23, 271–275 (2004)CrossRefGoogle Scholar
  16. 16.
    He, Y., Jin, M., Gu, X., Qin, H.: A \({C}^{\mbox{1}}\) globally interpolatory spline of arbitrary topology. In: Paragios, N., Faugeras, O., Chan, T., Schnörr, C. (eds.) VLSM 2005. LNCS, vol. 3752, pp. 295–306. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Gu, X., Wang, Y., Chan, T., Thompson, P., Yau, S.T.: Genus zero surface conformal mapping and its application to brain surface mapping. IEEE Transactions on Medical Imaging 23, 949–958 (2004)CrossRefGoogle Scholar
  18. 18.
    Gotsman, C., Gu, X., Sheffer, A.: Fundamentals of spherical parameterization for 3d meshes. In: Proceedings of SIGGRAPH 2003, pp. 358–363 (2003)Google Scholar
  19. 19.
    Gu, X., Yau, S.-T.: Global conformal surface parameterization. In: Proceedings of the Eurographics/ACM SIGGRAPH symposium on Geometry processing (SGP 2003), pp. 127–137 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ying He
    • 1
  • Kexiang Wang
    • 1
  • Hongyu Wang
    • 1
  • Xianfeng Gu
    • 1
  • Hong Qin
    • 1
  1. 1.Center for Visual Computing (CVC) and Department of Computer ScienceStony Brook UniversityStony BrookUSA

Personalised recommendations