Geometric Modeling of Nano Structures with Periodic Surfaces

  • Yan Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4077)


Commonly used boundary-based solid and surface modeling methods in traditional computer aided design are not capable of constructing configurations with large numbers of particles or complex topology. In this paper, we propose a new geometric modeling scheme, periodic surface, for material design at atomic, molecular, and meso scales. At molecular scale, periodicity of the model allows thousands of particles to be built efficiently. At meso scale, inherent porosity of the model represents morphology of polymer and macromolecule naturally. Model construction and operation methods are developed to build crystal and molecular models based on periodic surfaces.


Minimal Surface Hyperbolic Surface Periodic Surface Grid Surface Periodic Minimal Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Connolly, M.L.: Molecular Surfaces: A Review. Network Science (1996), Available at:
  2. 2.
    Lee, B., Richards, F.M.: The interpretation of protein structures: Estimation of static accessibility. J. Mol. Biol. 55, 379–400 (1971)CrossRefGoogle Scholar
  3. 3.
    Connolly, M.L.: Solve-accessible surfaces of proteins and nucleic acids. Science 221(4612), 709–713 (1983)CrossRefGoogle Scholar
  4. 4.
    Bajaj, C., Lee, H.Y., Merkert, R., Pascucci, V.: NURBS based B-rep models for macromolecules and their properties. In: Proc. 4th ACM Solid Modeling & Applications, Atlanta, GA, pp. 217–228 (1997)Google Scholar
  5. 5.
    Bajaj, C., Pascucci, V., Shamir, A., Holt, R., Netravali, A.: Dynamic Maintenance and Visualization of Molecular Surfaces. Discrete Applied Mathematics 127, 23–51 (2003)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Carson, M.: Wavelets and molecular structure. J. Comp. Aided Mol. Des. 10, 273–283 (1996)CrossRefGoogle Scholar
  7. 7.
    Hoffman, D.A., Hoffman, J.T.: Scientific Group Project, available at:
  8. 8.
    Andersson, S.: On the Description of Complex Inorganic Crystal Structures. Angew. Chem. Int. Ed. Engl. 22(2), 69–81 (1983)CrossRefGoogle Scholar
  9. 9.
    von Schnering, H.G., Nesper, R.: How Nature Adapts Chemical Structures to Curved Surfaces. Angew. Chem. Int. Ed. Engl. 26(11), 1059–1080 (1987)CrossRefGoogle Scholar
  10. 10.
    Savin, A., Jepsen, O., Flad, J., Andersen, O.-K., Preuss, H., von Schnering, H.-G.: Electron localization in solid-state structures of the elements: the diamond structure. Angew. Chem. Int. Ed. Engl. 31(2), 187–188 (1992)CrossRefGoogle Scholar
  11. 11.
    Hyde, S., Andersson, S., Larsson, K., Blum, Z., Landh, T., Lidin, S., Ninham, B.W.: The Language of Shape. Elsevier, Amsterdam (1997)Google Scholar
  12. 12.
    Luzzati, V., Spegt, P.A.: Polymorphism of Lipids. Nature 215(5102), 701–704 (1967)CrossRefGoogle Scholar
  13. 13.
    Donnay, G., Pawson, D.L.: X-ray Diffraction Studies of Echinoderm Plates. Science 166(3909), 1147–1150 (1969)CrossRefGoogle Scholar
  14. 14.
    Scriven, L.E.: Equilibrium Bicontinuous Structure. Nature 263(5573), 123–125 (1976)CrossRefGoogle Scholar
  15. 15.
    Erricsson, B., Larsson, K., Fontell, K.: A Cubic Protein-Monoolein-Water Phase. Biochim. Biophys. Acta 729, 23–27 (1983)CrossRefGoogle Scholar
  16. 16.
    Ciach, A., Holyst, R.: Periodic surfaces and cubic phases in mixtures of oil, water, and surfactant. J. Chem. Phys. 110(6), 3207–3214 (1999)CrossRefGoogle Scholar
  17. 17.
    Schwarz, U.S., Gompper, G.: Stability of bicontinuous cubic phases internary amphiphilic systems with spontaneous curvature. J. Chem. Phys. 112(8), 3792–3802 (2000)CrossRefGoogle Scholar
  18. 18.
    Mariani, P., Luzzti, V., Delacroix, H.: Cubic phases of lipid-containing systems: Structure analysis and biological implications. J. Mol. Biol. 204(1), 165–189 (1988)CrossRefGoogle Scholar
  19. 19.
    Luzzati, V., Varas, R., Mariani, P., Gulik, A., Delacroix, H.: Cubic phases of lipid-containing systems: Elements of a theory and biological connotations. J. Mol. Biol. 229(2), 540–551 (1993)CrossRefGoogle Scholar
  20. 20.
    Aggarwal, S.L.: Structure and Properties of Block Polymers and Multiphase Polymer Systems: An Overview of Present Status and Future Potential. Polymer 19(11), 938–956 (1976)CrossRefGoogle Scholar
  21. 21.
    Thomas, E.L., Alward, D.B., Kinning, D.J., Martin, D.C., Handlin, D.L., Fetters, L.J.: Ordered Bicontinuous Double-Diamond Structure of Start Block Copolymers: A New Equilibrium Microdomain Morphology. Macromolecules 19(8), 2197–2202 (1986)CrossRefGoogle Scholar
  22. 22.
    Hasegawa, H., Tanaka, H., Yamasaki, K., Hashimoto, T.: Bicontinuous Microdomain Morphology of Block Copolymers. 1. Tetrapod-Network Structure of Polystyrene-Polyisoprene Diblock Polymers. Macromolecules 20(7), 1651–1662 (1987)Google Scholar
  23. 23.
    Anderson, D.M., Thomas, E.L.: Microdomain Morphology of Star Copolymers in the Strong-Segregation Limit. Macromolecules 21(11), 3221–3230 (1988)CrossRefGoogle Scholar
  24. 24.
    Hajduk, D.A., Harper, P.E., Gruner, S.M., Honeker, C.C., Kim, G., Thomas, E.L., Fetters, L.J.: The Gyroid: A New Equilibrium Morphology in Weakly Segregated Diblock Copolymers. Macromolecules 27(15), 4063–4075 (1994)CrossRefGoogle Scholar
  25. 25.
    Wohlgemuth, M., Yufa, N., Hoffman, J., Thomas, E.L.: Triply Periodic Bicontinuous Cubic Microdomain Morphologies by Symmetries. Macromolecules 34(17), 6083–6089 (2001)CrossRefGoogle Scholar
  26. 26.
    Matsushita, Y., Suzuki, J., Seki, M.: Surfaces of Tricontinuous Structure Formed by an ABC Triblock Copolymer in Bulk. Physica B 248, 238–242 (1998)CrossRefGoogle Scholar
  27. 27.
    Davis, M.E.: Organizing for Better Synthesis. Nature 364(6436), 391–392 (1993)CrossRefGoogle Scholar
  28. 28.
    Gozdz, T.W., Holyst, R.: Triply Periodic Surfaces and Multiply Continuous Structures from the Landau Model of Microemulsions. Physical Review E 54(5), 5012–5027 (1996)CrossRefGoogle Scholar
  29. 29.
    Gandy, P.J.F., Bardhan, S., Mackay, A.L., Klinowski, J.: Nodal surface approximations to the P, G, D and I-WP triply periodic minimal surfaces. Chem. Phys. Lett. 336, 187–195 (2001)CrossRefGoogle Scholar
  30. 30.
    Fogden, A., Hyde, S.T.: Parametrization of triply periodic minimal surfaces. I. Mathematical basis of the construction. Acta Crys. A48, 442–451 (1992)MathSciNetGoogle Scholar
  31. 31.
    Hyde, S.T., Oguey, C.: From 2D Hyperbolic forests to 3D Euclidean entangled thickets. Eur. Phys. J. B 16, 613–630 (2000)CrossRefGoogle Scholar
  32. 32.
    Nesper, R., Leoni, S.: On tilings and patterns on Hyperbolic surfaces and their relation to structural chemistry. ChemPhysChem 2, 413–422 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yan Wang
    • 1
  1. 1.NSF Center for e-DesignUniversity of Central FloridaOrlandoU.S.A

Personalised recommendations