Advertisement

Insight for Practical Subdivision Modeling with Discrete Gauss-Bonnet Theorem

  • Ergun Akleman
  • Jianer Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4077)

Abstract

In this paper, we introduce an insight for practical subdivision modeling to improve the quality of control mesh structures. Our approach is based on a discrete version of Gaussian-Bonnet theorem on piecewise planar manifold meshes and vertex angle deflections that determines local geometric behavior. Based on discrete Gaussian-Bonnet theorem, summation of angle deflections of all vertices is independent of mesh structure and it depends on only the topology of the mesh surface. Based on this result, it can be possible to improve organization of mesh structure of a shape according to its intended geometric structure.

Keywords

Saddle Point Discrete Version Subdivision Scheme Mesh Structure Subdivision Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Weisstein, E.W.: Gauss-Bonnet Formula. From MathWorld–A Wolfram Web Resource (2005), http://mathworld.wolfram.com/Gauss-BonnetFormula.html
  2. 2.
    Etal, M.M.: Discrete differential-geometry operators for triangulated 2-manifolds. In: Hege, H.-C., Polthier, K. (eds.) Visualization and Mathematics III, pp. 35–57. Springer, Heidelberg (2003)Google Scholar
  3. 3.
    Watkins, T.: Gauss-Bonnet Theorem and its Generalization (2005)Google Scholar
  4. 4.
    Williams, R.: The Geometrical Foundation of Natural Structures. Dover Publications, Inc., Mineola (1972)Google Scholar
  5. 5.
    Hoffmann, C.M.: Geometric & Solid Modeling, An Introduction. Morgan Kaufman Publishers, Inc., San Mateo (1989)Google Scholar
  6. 6.
    Mantyla, M.: An Introduction to Solid Modeling. Computer Science Press, Rockville (1988)Google Scholar
  7. 7.
    Koman, F.: Ilhan Koman - Retrospective. Yapi ve Kredi Kulture Sanat yayincilik, Beyoglu, Istanbul, Turkey (2005)Google Scholar
  8. 8.
    Calladine, C.R.: Theory of Shell Structures. Cambridge University Press, Cambridge (1983)MATHCrossRefGoogle Scholar
  9. 9.
    Milnor, J.: Morse Theory. Princeton University Press, Princeton (1963)MATHGoogle Scholar
  10. 10.
    Landreneau, E., Akleman, E., Srinivasan, V.: Local mesh operations, extrusions revisited. In: Proceedings of the International Conference on Shape Modeling and Applications, pp. 351–356 (2005)Google Scholar
  11. 11.
    Kobbelt, L.: \(\sqrt{3}\)-subdivision. In: Proceedings of SIGGRAPH 2000, Computer Graphics Proceedings. Annual Conference Series, ACM, pp. 103–112. ACM Press / ACM SIGGRAPH (2000)Google Scholar
  12. 12.
    Loop, C.: Smooth subdivision surfaces based on triangles. Master’s thesis, University of Utah (1987)Google Scholar
  13. 13.
    Doo, D., Sabin, M.: Behavior of recursive subdivision surfaces near extraordinary points. Computer Aided Design (10), 356–360 (1978)CrossRefGoogle Scholar
  14. 14.
    Catmull, E., Clark, J.: Recursively generated b-spline surfaces on arbitrary topological meshes. Computer Aided Design (10), 350–355 (1978)CrossRefGoogle Scholar
  15. 15.
    Peters, J., Reif, U.: The simplest subdivision scheme for smoothing polyhedra. ACM Transactions on Graphics 16(4), 420–431 (1997)CrossRefGoogle Scholar
  16. 16.
    Sabin, M.: Subdivision: Tutorial notes. In: Shape Modeling International 2001, Tutorial (2000)Google Scholar
  17. 17.
    Claes, J., Beets, K., Reeth, F.V.: A corner-cutting scheme for hexagonal subdivision surfaces. In: Proceedings of Shape Modeling International 2002, Banff, Canada, pp. 13–17 (2002)Google Scholar
  18. 18.
    Oswald, P., Schröder, P.: Composite primal/dual \(\sqrt{3}\)-subdivision schemes. Computer Aided Geometric Design, CAGD (2003)Google Scholar
  19. 19.
    Akleman, E., Srinivasan, V.: Honeycomb subdivision. In: Proceedings of ISCIS 2002, 17th International Symposium on Computer and Information Sciences, November 2002, vol. 17, pp. 137–141 (2002)Google Scholar
  20. 20.
    Akleman, E., Srinivasan, V., Melek, Z., Edmundson, P.: Semi-regular pentagonal subdivision. In: Proceedings of the International Conference on Shape Modeling and Applications, pp. 110–118 (2004)Google Scholar
  21. 21.
    Srinivasan, V., Akleman, E.: Connected and manifold sierpinski polyhedra. In: Proceedings of Solid Modeling and Applications, pp. 261–266 (2004)Google Scholar
  22. 22.
    Zorin, D., Schröder, P.: A unified framework for primal/dual quadrilateral subdivision schemes. Computer Aided Geometric Design, CAGD (2002)Google Scholar
  23. 23.
    Prautzsch, H., Boehm, W.: Chapter: Box splines. The Hanbook of Computer Aided Geometric Design (2000)Google Scholar
  24. 24.
    Fomenko, A.T., Kunii, T.L.: Topological Modeling for Visualization. Springer, New York (1997)MATHGoogle Scholar
  25. 25.
    Ferguson, H., Rockwood, A., Cox, J.: Topological design of sculptured surfaces. In: Proceedings of SIGGRAPH 1992: Computer Graphics Proceedings. Annual Conference Series, ACM, pp. 149–156. ACM Press / ACM SIGGRAPH (1992)Google Scholar
  26. 26.
    Welch, W., Witkin, A.: Free-form shape design using triangulated surfaces. In: Proceedings of SIGGRAPH 1994: Computer Graphics Proceedings. Annual Conference Series, ACM, pp. 247–256. ACM Press / ACM SIGGRAPH (1994)Google Scholar
  27. 27.
    Dyn, N., Levin, D., Simoens, J.: Face-value subdivision schemes on triangulations by repeated averaging. In: Curve and Surface Fitting: Saint-Malo 2002, pp. 129–138 (2002)Google Scholar
  28. 28.
    Takahashi, S., Shinagawa, Y., Kunii, T.L.: A feature-based approach for smooth surfaces. In: Proceedings of Fourth Symposium on Solid Modeling, pp. 97–110 (1997)Google Scholar
  29. 29.
    Zorin, D., Schröder, P.: Subdivision for modeling and animation. In: ACM SIGGRAPH 2000 Course #23 Notes (2000)Google Scholar
  30. 30.
    Gross, J.L., Tucker, T.W.: Topological Graph Theory. John Wiley & Sons, New York (1987)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ergun Akleman
    • 1
  • Jianer Chen
    • 2
  1. 1.Visualization Sciences Program, Department of ArchitectureTexas A&M UniversityCollege StationUSA
  2. 2.Computer Science DepartmentTexas A&M UniversityCollege StationUSA

Personalised recommendations