Advertisement

Preserving Form-Features in Interactive Mesh Deformation

  • Hiroshi Masuda
  • Yasuhiro Yoshioka
  • Yoshiyuki Furukawa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4077)

Abstract

Interactive mesh editing techniques that preserve discrete differential properties are promising to support the design of mechanical parts such as automobile sheet metal panels. However, existing methods lack the ability to manipulate form-features and hard constraints, which are common in engineering applications. In product design, some regions on a 3D model are often required to precisely preserve the surface types and parameters during deformation. In this paper, we propose a discrete framework for preserving the shapes of form-features using hard constraints in interactive shape deformation. Deformed shapes are calculated so that form-features translate and rotate while preserving their original shapes according to manipulating handles. In addition, we show how to constrain the motion of form features using linear constraints. The implemented system can achieve a real-time response for constrained deformation.

Keywords

Soft Constraint Hard Constraint Curvature Vector Unit Quaternion Vertex Position 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sorkine, O., Lipman, Y., Cohen-Or, D., Alexa, M., Rössl, C., Seidel, H.-P.: Laplacian surface editing. In: SGP 2004: Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing, pp. 175–184 (2004)Google Scholar
  2. 2.
    Botsch, M., Kobbelt, L.: An intuitive framework for real-time freeform modeling. ACM Transactions on Graphics 23(3), 630–634 (2004)CrossRefGoogle Scholar
  3. 3.
    Yu, Y., Zhou, K., Xu, D., Shi, X., Bao, H., Guo, B., Shum, H.-Y.: Mesh editing with poisson-based gradient field manipulation. ACM Transactions on Graphics 23(3), 644–651 (2004)CrossRefGoogle Scholar
  4. 4.
    Fontana, M., Giannini, F., Meirana, M.: A free form feature taxonomy. Computer Graphics Forum 18(3), 703–711 (1999)CrossRefGoogle Scholar
  5. 5.
    Cavendish, J.C.: Integrating feature-based surface design with freeform deformation. Computer-Aided Design 27(9), 703–711 (1995)MATHCrossRefGoogle Scholar
  6. 6.
    Meyer, M., Desbrun, M., Schröder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. In: Visualization and Mathematics III, pp. 35–57 (2003)Google Scholar
  7. 7.
    Sederberg, T.W., Parry, S.R.: Free-form deformation of solid geometric models. In: Proceedings of SIGGRAPH 1986, pp. 151–160 (1986)Google Scholar
  8. 8.
    Coquillart, S.: Extended free-form deformation: a sculpturing tool for 3D geometric modeling. In: Proceedings of SIGGRAPH 1990, pp. 187–196 (1990)Google Scholar
  9. 9.
    MacCracken, R., Joy, K.I.: Free-form deformations with lattices of arbitrary topology. In: Proceedings of SIGGRAPH 1996, pp. 181–188 (1996)Google Scholar
  10. 10.
    Hu, S.-M., Zhang, H., Tai, C.-L., Sun, J.-G.: Direct manipulation of ffd: Efficient explicit solutions and decomposible multiple point constraints. The Visual Computers 17(6), 370–379 (2001)MATHGoogle Scholar
  11. 11.
    Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., Stuetzle, W.: Multiresolution analysis of arbitrary meshes. In: Proceedings of SIGGRAPH 1995, pp. 173–182 (1995)Google Scholar
  12. 12.
    Zorin, D., Schröder, P., Sweldens, W.: Interactive multiresolution mesh editing. In: Proceedings of SIGGRAPH 1997, pp. 259–268 (1997)Google Scholar
  13. 13.
    Kobbelt, L., Campagna, S., Vorsatz, J., Seidel, H.-P.: Interactive multi-resolution modeling on arbitrary meshes. In: Proceedings of SIGGRAPH 1998, pp. 105–114 (1998)Google Scholar
  14. 14.
    Guskov, I., Sweldens, W., Schröder, P.: Multiresolution signal processing for meshes. In: Proceedings of SIGGRAPH 1999, pp. 325–334 (1999)Google Scholar
  15. 15.
    Lee, S.: Interactive multiresolution editing of arbitrary meshes. Computer Graphics Forum 18(3), 73–82 (1999)CrossRefGoogle Scholar
  16. 16.
    Bloor, M.I.G., Wilson, M.J.: Using partial differential equations to generate free-form surfaces. Computer-Aided Design 22(4), 202–212 (1990)MATHCrossRefGoogle Scholar
  17. 17.
    Schneider, R., Kobbelt, L.: Generating fair meshes with g1 boundary conditions. In: GMP 2000: Proceedings of the international conference on Geometric Modeling and Processing, pp. 251–261 (2000)Google Scholar
  18. 18.
    Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Implicit fairing of irregular meshes using diffusion and curvature flow. In: Proceedings of SIGGRAPH 1999, pp. 317–324 (1999)Google Scholar
  19. 19.
    Yamada, A., Furuhata, T., Shimada, K., Hou, K.-H.: A discrete spring model for generating fair curves and surfaces. In: Pacific Conference on Computer Graphics and Applications, pp. 270–279 (1999)Google Scholar
  20. 20.
    Taubin, G.: A signal processing approach to fair surface design. In: Proceedings of SIGGRAPH 1995, pp. 351–358 (1995)Google Scholar
  21. 21.
    Catalao, C.E., Falcidieno, B., Giannini, F., Monti, M.: A survey of computer-aided modeling tools for aesthetic design. Journal of Computer and Information Science in Engineering 2(11), 11–20 (2002)CrossRefGoogle Scholar
  22. 22.
    Zhou, K., Huang, J., Snyder, J., Liu, X., Bao, H., Guo, B., Shum, H.-Y.: Large mesh deformation using the volumetric graph laplacian. ACM Transactions on Graphics 24(3), 496–503 (2005)CrossRefGoogle Scholar
  23. 23.
    Alexa, M.: Differential coordinates for local mesh morphing and deformation. The Visual Computer 19(2-3), 105–114 (2003)MATHGoogle Scholar
  24. 24.
    Botsch, M., Bommes, D., Kobbelt, L.: Efficient linear system solvers for mesh processing. In: Martin, R., Bez, H.E., Sabin, M.A. (eds.) IMA 2005. LNCS, vol. 3604, pp. 62–83. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  25. 25.
    Welch, W., Witkin, A.: Variational surface modeling. In: Proceedings of SIGGRAPH 1992, pp. 157–166 (1992)Google Scholar
  26. 26.
    Yoshioka, Y., Masuda, H., Furukawa, Y.: A constrained least-squares approach to interactive mesh deformation. In: SMI 2006: Proceedings of the international conference on Shape Modeling and Applications (to appear, 2006)Google Scholar
  27. 27.
    Lipman, Y., Sorkine, O., Cohen-Or, D., Levin, D., Rössl, C., Seidel, H.-P.: Differential coordinates for interactive mesh editing. In: SMI 2004: Proceedings of the international conference on Shape Modeling and Applications, pp. 181–190 (2004)Google Scholar
  28. 28.
    Lipman, Y., Sorkine, O., Levin, D., Cohen-Or, D.: Linear rotation-invariant coordinates for meshes. ACM Transactions on Graphics 24(3), 479–487 (2005)CrossRefGoogle Scholar
  29. 29.
    Zayer, R., Rössl, C., Karni, Z., Seidel, H.-P.: Harmonic guidance for surface deformation. Computer Graphics Forum 24(3), 601–609 (2005)CrossRefGoogle Scholar
  30. 30.
    Gould, N.I.M., Hu, Y., Scott, J.A.: A numerical evaluation of sparse direct solvers for the solution of large sparse, symmetric linear systems of equations. Tech. Rep. RAL-TR-2005-005, Council for the Central Laboratory of the Research Councils (2005)Google Scholar
  31. 31.
    Shoemake, K.: Animating rotation with quaternion curves. In: Proceedings of SIGGRAPH 1985, pp. 245–254 (1985)Google Scholar
  32. 32.
    Johnson, M.P.: Exploiting quaternions to support expressive interactive character motion, Ph.D. thesis, Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences (February 2003)Google Scholar
  33. 33.
    Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Experimental Mathematics 2(1), 15–36 (1993)MATHMathSciNetGoogle Scholar
  34. 34.
    Mangan, A.P., Whitaker, R.T.: Partitioning 3D surface meshes using watershed segmentation. IEEE Transaction on Visualization and Computer Graphics 5(4), 308–321 (1999)CrossRefGoogle Scholar
  35. 35.
    Chazelle, B., Dobkin, D.P., Shouraboura, N., Tal, A.: Strategies for polyhedral surface decomposition: An experimental study. CGTA: Computational Geometry: Theory and Applications 7(4-5), 327–342 (1997)MATHMathSciNetGoogle Scholar
  36. 36.
    Shlafman, S., Tal, A., Katz, S.: Metamorphosis of polyhedral surfaces using decomposition. Computer Graphics Forum 21(3), 219–228 (2002)CrossRefGoogle Scholar
  37. 37.
    Katz, S., Tal, A.: Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Transactions on Graphics 22(3), 954–961 (2003)CrossRefGoogle Scholar
  38. 38.
    Katz, S., Leifman, G., Tal, A.: Mesh segmentation using feature point and core extraction. The Visual Computer 21(8-10), 649–658 (2005)CrossRefGoogle Scholar
  39. 39.
    Masuda, H., Furukawa, Y., Yoshioka, Y., Yamato, H.: Volume-based cut-and-paste editing for early design phases. In: ASME/DETC2004/CIE: Design Engineering Technical Conferences and Computer and Information Engineering Conference (2004)Google Scholar
  40. 40.
    Nealen, A., Sorkine, O., Alexa, M., Cohen-Or, D.: A sketch-based interface for detail-preserving mesh editing. ACM Transactions on Graphics 24(3), 1142–1147 (2005)CrossRefGoogle Scholar
  41. 41.
    Hu, S.-M., Li, Y., Ju, T., Zhu, X.: Modifying the shape of nurbs surfaces with geometric constraints. Computer Aided Design 33(12), 903–912 (2001)CrossRefGoogle Scholar
  42. 42.
    Sorkine, O.: Laplacian mesh processing. In: STAR Proceedings of Eurographics, pp. 53–70 (2005)Google Scholar
  43. 43.
    Toledo, S., Chen, D., Rotkin, V.: Taucs: A library of sparse linear solvers (2003), http://www.tau.ac.il/~stoledo/taucs/
  44. 44.
    Dam, E.B., Koch, M., Lillholm, M.: Quaternions, interpolation and animation. Tech. Rep. DIKU-TR-98/5, Department of Computer Science, University of Copenhagen (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Hiroshi Masuda
    • 1
  • Yasuhiro Yoshioka
    • 1
  • Yoshiyuki Furukawa
    • 2
  1. 1.The University of TokyoTokyoJapan
  2. 2.National Institute of Advanced Industrial Science and TechnologyIbarakiJapan

Personalised recommendations