Advertisement

Piecewise Developable Surface Approximation of General NURBS Surfaces, with Global Error Bounds

  • Jacob Subag
  • Gershon Elber
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4077)

Abstract

Developable surfaces possess qualities that are desirable in the manufacturing processes of CAD/CAM models. Specifically, models formed out of developable surfaces can be manufactured from planar sheets of material without distortion. This quality proves most useful when dealing with materials such as paper, leather or sheet metal, which cannot be easily stretched or deformed during production.

In this work, we present a semi-automatic algorithm to form a piecewise developable surface approximation of a general NURBS surface. These developable surfaces are constructed as envelopes of the tangent planes along a set of curves on the input surface. Furthermore, the Hausdorff distance between the given surface and the approximating set of developables is globally bounded by a user-provided threshold.

Keywords

Control Point Point Cloud Tangent Plane Hausdorff Distance Parametric Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aumann, G.: Interpolation with developable Bezier patches. Computer Aided Geometric Design 8(5), 409–420 (1991)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bloomenthal, J., Wyvill, B. (eds.): Introduction to Implicit Surfaces. Morgan Kaufmann Publishers Inc., San Francisco (1997); Section 2.6.4MATHGoogle Scholar
  3. 3.
    Carmo, M.P.D.: Differential Geometry of Curves and Surfaces, pp. 195–197. Prentice-Hall, Englewood Cliffs (1976)MATHGoogle Scholar
  4. 4.
    Chen, H.-Y., Lee, I.-K., Leopoldseder, S., Pottmann, H., Randrup, T., Wallner, J.: On surface approximation using developable surfaces. Graphical Models and Image Processing 61(2), 110–124 (1999)MATHCrossRefGoogle Scholar
  5. 5.
    Chen, X., Riesenfeld, R.F., Cohen, E.: Degree reduction for NURBS symbolic computation on curves (in preparation)Google Scholar
  6. 6.
    Cohen, E., Riesenfeld, R.F., Elber, G.: Geometric Modeling with Splines, ch. 9. A K Peters (2001)Google Scholar
  7. 7.
    Elber, G.: Irit solid modeler, http://www.cs.technion.ac.il/~irit
  8. 8.
    Elber, G.: Model fabrication using surface layout projection. Computer-aided Design 27(4), 283–291 (1995)MATHCrossRefGoogle Scholar
  9. 9.
    Elber, G., Cohen, E.: Second-order Surface Analysis Using Hybrid Symbolic and Numeric Operator. ACM Trans. Graph 12(2), 160–178 (1993)MATHCrossRefGoogle Scholar
  10. 10.
    Elber, G., Kim, M.-S.: Geometric constraint solver using multivariate rational spline functions. In: The Sixth ACM/IEEE Symposium on Solid Modeling and Applications, Ann Arbor, Michigan, June 2001, pp. 1–10 (2001)Google Scholar
  11. 11.
    Hass, J., Farouki, R.T., Han, C.Y., Song, X., Sederberg, T.W.: Guaranteed consistency of surface intersections and trimmed surfaces using a coupled topology resolution and domain decomposition scheme. In: Advances in Computational Mathematics (to appear, 2005), http://mae.ucdavis.edu/~farouki/index.html
  12. 12.
    Hoschek, J.: Approximation of surfaces of revolution by developable surfaces. Computer-Aided Design 30(10), 757–763 (1998)MATHCrossRefGoogle Scholar
  13. 13.
    Hoschek, J., Pottmann, H.: Interpolation and approximation with developable B-spline surfaces. In: Dæhlen, M., Lyche, T., Schumaker, L.L. (eds.) Proceedings of the first Conference on Mathematical Methods for Curves and Surfaces (MMCS 1994), pp. 255–264. Vanderbilt University Press, Nashville (1995)Google Scholar
  14. 14.
    Leopoldseder, S., Pottmann, H.: Approximation of developable surfaces with cone spline surfaces. Computer-Aided Design 30(7), 571–582 (1998)MATHCrossRefGoogle Scholar
  15. 15.
    Matlab ©, copyright 1984-2002, The Mathworks, Inc., See also: http://www.mathworks.com/
  16. 16.
    Park, F., Yu, J., Chun, C., Ravani, B.: Design of developable surfaces using optimal control. Journal of Mechanical Design 124(4), 602–608 (2002)CrossRefGoogle Scholar
  17. 17.
    Peternell, M.: Developable surface fitting to point clouds. Computer Aided Geometric Design, 785–803 (2004)Google Scholar
  18. 18.
    Peternell, M.: Recognition and reconstruction of developable surfaces from point clouds. In: GMP, pp. 301–310 (2004)Google Scholar
  19. 19.
    Pottmann, H., Farin, G.E.: Developable rational Bézier and B-spline surfaces. Computer Aided Geometric Design 12(5), 513–531 (1995)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Pottmann, H., Wallner, J.: Approximation algorithms for developable surfaces. Computer Aided Geometric Design 16(6), 539–556 (1999)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jacob Subag
    • 1
  • Gershon Elber
    • 1
  1. 1.Technion – Israel Institute of TechnologyHaifaIsrael

Personalised recommendations