Advertisement

PISC: Polymorphic Instruction Set Computers

  • Stamatis Vassiliadis
  • Georgi Kuzmanov
  • Stephan Wong
  • Elena Moscu-Panainte
  • Georgi Gaydadjiev
  • Koen Bertels
  • Dmitry Cheresiz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3985)

Abstract

We introduce a new paradigm in the computer architecture referred to as Polymorphic Instruction Set Computers (PISC). This new paradigm, in difference to RISC/CISC, introduces hardware extended functionality on demand without the need of ISA extensions. We motivate the necessity of PISCs through an example, which arises several research problems unsolvable by traditional architectures and fixed hardware designs. More specifically, we address a new framework for tools, supporting reconfigurability; new architectural and microarchitectural concepts; new programming paradigm allowing hardware and software to coexist in a program; and new spacial compilation techniques. The paper illustrates the theoretical performance boundaries and efficiency of the proposed paradigm utilizing established evaluation metrics such as potential zero execution (PZE) and the Amdahl’s law. Overall, the PISC paradigm allows designers to ride the Amdahl’s curve easily by considering the specific features of the reconfigurable technology and the general purpose processors in the context of application specific execution scenarios.

Keywords

Parallel Execution Programming Paradigm Register Allocation Instruction Level Parallelism Instruction Count 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vassiliadis, S., Blaner, B., Eickemeyer, R.J.: SCISM: A scalable compound instruction set machine. IBM J. Res. Develop. 38(2), 59–78 (1994)CrossRefGoogle Scholar
  2. 2.
    Amdahl, G.M.: Validity of the single processor approach to achieving large scale computing capabilities. In: Proc. AFIPS 1967 Spring Joint Computer Conference, pp. 483–485 (1967)Google Scholar
  3. 3.
    Patterson, D.A., Ditzel, D.R.: The case for the reduced instruction set computer. SIGARCH Comput. Archit. News 8(6), 25–33 (1980)CrossRefGoogle Scholar
  4. 4.
    Bhandarkar, D., Clark, D.W.: Performance from Architecture: Comparing a RISC and a CISC with Similar Hardware Organization. Communications of the ACM, 310–319 (September 1991)Google Scholar
  5. 5.
    Roelofs, G.: PNG: The Definitive Guide. O’Reilly and Associates (1999)Google Scholar
  6. 6.
    Hakkennes, E.A., Vassiliadis, S.: Hardwired Paeth codec for portable network graphics (PNG). In: Proc. Euromicro 1999, pp. 318–325 (1999)Google Scholar
  7. 7.
    Hauck, S., Fry, T., Hosler, M., Kao, J.: The Chimaera Reconfigurable Functional Unit. In: Proc. IEEE Symp. on Field-Programmable Custom Computing Machines, pp. 87–96 (1997)Google Scholar
  8. 8.
    Rosa, A.L., Lavagno, L., Passerone, C.: Hardware/Software Design Space Exploration for a Reconfigurable Processor. In: Proc. Design, Automation and Test in Europe 2003 (DATE 2003), pp. 570–575 (2003)Google Scholar
  9. 9.
    Vassiliadis, S., Wong, S., Cotofana, S.: Microcode Processing: Positioning and Directions. IEEE Micro 23(4), 21–30 (2003)CrossRefGoogle Scholar
  10. 10.
    Vassiliadis, S., Gaydadjiev, G., Bertels, K., Moscu Panainte, E.: The Molen Programming Paradigm. In: Proc. Third International Workshop on Systems, Architectures, Modeling, and Simulation (SAMOS 2003), pp. 1–7 (July 2003)Google Scholar
  11. 11.
    Vassiliadis, S., Wong, S., Cotofana, S.: The MOLEN ρ μ-Coded Processor. In: Brebner, G., Woods, R. (eds.) FPL 2001. LNCS, vol. 2147, pp. 275–285. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Vassiliadis, S., Wong, S., Gaydadjiev, G.N., Bertels, K., Kuzmanov, G., Panainte, E.M.: The Molen Polymorphic Processor. IEEE Transactions on Computers 53, 1363–1375 (2004)CrossRefGoogle Scholar
  13. 13.
    Cardoso, J.M.P., Neto, H.C.: Compilation for FPGA-Based Reconfigurable Hardware. IEEE Design & Test of Computers 20(2), 65–75 (2003)CrossRefGoogle Scholar
  14. 14.
    Kuzmanov, G., Gaydadjiev, G.N., Vassiliadis, S.: The MOLEN Processor Prototype. In: Proc. IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM 2004), pp. 296–299 (April 2004)Google Scholar
  15. 15.
    Moscu Panainte, E., Bertels, K., Vassiliadis, S.: Compiling for the Molen Programming Paradigm. In: Proc. 13th Int. Conf. on Field Programmable Logic and Applications (FPL), pp. 900–910 (September 2003)Google Scholar
  16. 16.
  17. 17.
  18. 18.
    Gokhale, M., Stone, J.: Napa C: Compiling for a Hybrid RISC/FPGA Architecture. In: Proc. IEEE Symp. on Field-Programmable Custom Computing Machines, pp. 126–135 (April 1998)Google Scholar
  19. 19.
    Moscu Panainte, E., Bertels, K., Vassiliadis, S.: Compiler-driven FPGA-area Allocation for Reconfigurable Computing. In: Proc. Design, Automation and Test in Europe 2006 (DATE 2006), pp. 369–374 (March 2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Stamatis Vassiliadis
    • 1
  • Georgi Kuzmanov
    • 1
  • Stephan Wong
    • 1
  • Elena Moscu-Panainte
    • 1
  • Georgi Gaydadjiev
    • 1
  • Koen Bertels
    • 1
  • Dmitry Cheresiz
    • 1
  1. 1.Computer Engineering, EEMCSDelft University of TechnologyDelftThe Netherlands

Personalised recommendations