The Emergence of Non-von Neumann Processors

  • Daniel S. Poznanovic
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3985)


The von Neumann processor has been the foundation of computing from the start. Today’s instruction processors are powerful and scale to thousands to yield large compute power, but a small fraction of the peak. The ASIC chip technology that implementations the fixed design microprocessor is placing significant constraints on the design of processors. At the same time reconfigurable Processors based upon FPGA chip technology are growing in capability and performance using a nontraditional processor architecture without instructions (the non-von Neumann architecture). Both processor types are trending to a common design point. This paper explores these trends and explains the technology of the emerging non-von Neumann processor and presents an example implementation.


Field Programmable Gate Array Clock Rate Cell Processor Stream Processor Processor Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Weik, M. H.: The ENIAC Story, ORDINANCE (January-February 1961),
  2. 2.
  3. 3.
  4. 4.
  5. 5.
    Gara, A., Blumrich, M.A., Chen, D., Chiu, G.L., Coteus, P., Giampapa, M.E., Haring, R.A., Heidelberger, P., Hoenicke, D., Kopcsay, G.V., Liebsch, T.A., Ohmacht, M., Steinmacher-Burow, B.D., Takken, T.: Blue Gene/L system architecture. IBM J. Res. & Dev. 49(2/3), 195–212 (2005)CrossRefGoogle Scholar
  6. 6.
    Bright, A.A., Haring, R.A., Dombrowa, M.B., Ohmacht, M., Hoenicke, D., Singh, S., Marcella, J.A., Lembach, R.F., Douskey, S.M., Ellavsky, M.R., Zoellin, C.G.: Blue Gene/L Compute chip: Synthesis, timing and physical design. IBM J. Res. & Dev. 49(2/3), 277–288 (2005)CrossRefGoogle Scholar
  7. 7.
    Ohmacht, M., Bergamaschi, R.A., Bhattacharya, S., Gara, A., Giampapa, M.E., Gopalsamy, B., Haring, R.A., Hoenicke, D., Krolak, D.J., Marcella, J.A., Nathanson, B.J., Salapura, V., Wazlowski, M.E.: Blue Gene/L Compute chip: Memory and Ethernet subsystem. IBM J. Res. & Dev. 49(2/3), 255–264 (2005)CrossRefGoogle Scholar
  8. 8.
    Moreira, J.E., Almási, G., Archer, C., Bellofatto, R., Bergner, P., Brunheroto, J.R., Brutman, M., Castaños, J.G., Crumley, P.G., Gupta, M., Inglett, T., Lieber, D., Limpert, D., McCarthy, P., Megerian, M., Mendell, M., Mundy, M., Reed, D., Sahoo, R.K., Sanomiya, A., Shok, R., Smith, B., Stewart, G.G.: Blue Gene/L programming and operating environment. IBM J. Res. & Dev. 49(2/3), 367–376 (2005)CrossRefGoogle Scholar
  9. 9.
    Intel: Intel Multi-Core Processor Architecture Development Backgrounder,
  10. 10.
    Intel: A New Era of Architectural Innovation Arrives with Intel Dual-Core Processors,
  11. 11.
    Ahn, J.H., Dally, W.J., Khailany, B., Kapasi, U.J.: Evaluating the Imagine Stream Architecture. In: Proceedings of the 31st Annual International Symposium on Computer Architecture, Munich, Germany (June 2004)Google Scholar
  12. 12.
    Dally, W.J., Kapasi, U.J., Khailany, B., Ahn, J.H.: Stream Processors: Programmability with Efficiency. ACM Queue 2(1), 52–62 (2004)CrossRefGoogle Scholar
  13. 13.
    Kapasi, U.J., Rixner, S., Dally, W.J., Khailany, B., Ahn, J.H., Mattson, P., Owens, J.D.: Programmable Stream Processors. IEEE Computer, 54–62 (2003)Google Scholar
  14. 14.
    Underwood, K.: FPGAs vs. CPUs: Trends in Peak Floating-Point Performance. In: FPGA 2004, February 22-24 (2004)Google Scholar
  15. 15.
    SRC Computers, Inc.,

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Daniel S. Poznanovic
    • 1
  1. 1.SRC Computers, Inc.Colorado SpringsUSA

Personalised recommendations