A Peer-to-Peer CF-Recommendation for Ubiquitous Environment

  • Hyea Kyeong Kim
  • Kyoung Jun Lee
  • Jae Kyeong Kim
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4088)


In ubiquitous environment where all entities can freely connect and collaborate with each other from anywhere, the amount of accessible information is overwhelming and desired information often remains unfound. So there is a growing need to provide the personalized recommendation services for the customers in ubiquitous space. This paper suggests a UREC_P2P(U-RECom-mendation by peer-to-peer), a recommendation procedure in ubiquitous environment adopting P2P technologies combined with collaborative filtering algorithm. UREC_P2P is implemented and comparatively evaluated with a CF-based recommender system in client-server environment. The evaluation result shows that UREC_P2P has a good potential to be a preeminent and realistic solution to the recommendation problems encountered in ubiquitous environment.


Recommender System Ubiquitous Computing Collaborative Filter Queue Size Recommendation List 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chen, A.: Context-Aware Collaborative Filtering System: Predicting the User’s Preference in Ubiquitous Computing. In: Strang, T., Linnhoff-Popien, C. (eds.) LoCA 2005. LNCS, vol. 3479, pp. 244–253. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Iwao, T., Amamiya, S., Zhong, G., Amamiya, M.: Ubiquitous Computing with Service Adaptation Using Peer-to-Peer Communication Framework. In: 9th IEEE Workshop on Future Trends of Distributed Computing Systems, p. 240 (2003)Google Scholar
  3. 3.
    Keegan, S., O’Hare, G.: EasiShop: Enabiling uCommerce through Intelligenct Mobile Agent Technologies. In: Horlait, E., Magedanz, T., Glitho, R.H. (eds.) MATA 2003. LNCS, vol. 2881, pp. 200–209. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Kim, H., Kim, J., Cho, Y.: A Collaborative Filtering Recommendation Methodology for Peer-to-Peer Systems. In: Bauknecht, K., Pröll, B., Werthner, H. (eds.) EC-Web 2005. LNCS, vol. 3590, pp. 98–107. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Porkaew, K., Chakrabarti, K., Mehrotra, S.: Query Refinement for Multimedia Similarity Retrieval in MARS. In: Proc. Of the 7th ACM Multimedia Conference, pp. 235–238 (1999)Google Scholar
  6. 6.
    Takemoto, M., Sunage, H., Tanaka, K., Matsumura, H., Shinohara, E.: The Ubiquitous Service-Oriented Network (USON) – An Approach for a Ubiquitous World based on P2P Technology. In: Proc. 2nd International Coference on Peer-to-Peer Computing (2002)Google Scholar
  7. 7.
    You, S., Choi, J., Heo, G., Choi, D., Park, H., Kim, H., Cho, W.: COCOLAB: Supporting Human Life in Ubiquitous Environment by Community Computing. In: 1th Korea/Japan Joint Workshop on Ubiquitous Computing & Networking Systems (2005)Google Scholar
  8. 8.
    Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: An Efficient Data Clustering Method for Very Large Database. In: Proc. of the 1996 ACM SIGMOD International Conference on Management of Data, pp. 103–114 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Hyea Kyeong Kim
    • 1
  • Kyoung Jun Lee
    • 1
  • Jae Kyeong Kim
    • 1
  1. 1.School of Business AdministrationKyung Hee UniversitySeoulKorea

Personalised recommendations