The Efficient and Low Load Range Queries in P2P

  • Shui Chao
  • Zhou Pen
  • JiaYan
  • Zhou Bing
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4088)


To enable efficient and appropriate uses of the resources in web, it is important to provide range query to keep track of the availability and attributes of millions of service which are geographically distributed. Range query in P2P face a performance tradeoff problem between the efficiency of query and number of message: Optimizing one tends to put pressure on the others. In this paper, a range query algorithm had proposed which lookup for every node in range can be done via O(logN) hops, and number of messages is trend to O(logN)+m-1. We evaluate our system in this paper via a simulation and show that its design along with particular Range-query algorithm meets the goals of efficient query and low message load.


Search Tree Range Query Overlay Network Resource Discovery Query Message 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Xu, J., Kumar, A., Yu, X.: On the Fundamental Tradeoffs between Routing Table Size and Network Diameter In peer-to-peer Networks. IEEE Journal on Selected Areas in Communications (JSAC) 22(1) (January 2004)Google Scholar
  2. 2.
    Li, D., Lu, X., et al.: Topology and Resource Discovery in Peer-to-Peer Overlay Networks. In: Jin, H., Pan, Y., Xiao, N., Sun, J. (eds.) GCC 2004. LNCS, vol. 3252, Springer, Heidelberg (2004)Google Scholar
  3. 3.
    Bharambe, A.R., Agrawal, M., Seshan, S.: Mercur: Supporting Scalable Multi-attribute Range Queries. In: Proc. of SIGCOMM 2004, Portland, Oregon, USA (2004)Google Scholar
  4. 4.
    Oppenheimer, D., Albrecht, J., Patterson, D., Vahdat, A.: Distributed Resource Discovery on Planetlab with SWORD. In: Proc. of the First Workshop on Real Large Distributed Systems (WORLDS 2004), December 2004, Santa Fe, New Mexico, USA (2004)Google Scholar
  5. 5.
    Cai, M., Frank, M., Chen, J., Szekely, P.: MAAN: A Multi-attribute Addressable Network for Grid Information Services. In: Proc. of the 4th International Workshop on Grid Computing (Grid’2003), Phoenix, AZ, USA (2003)Google Scholar
  6. 6.
    Crainiceanu, A., Linga, P., Gehrke, J., Shanmugasundaram, J.: PTree: A P2P Index for Resource Discovery Applications. In: Proc. of WWW2004, May 2004, New York, USA (2004)Google Scholar
  7. 7.
    Nazerzadeh, H., Ghodsi, M.: RAQ: A Range-Queriable Distributed Data Structure. In: Vojtáš, P., Bieliková, M., Charron-Bost, B., Sýkora, O. (eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 269–277. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Milgram, S.: The small world problem. Psychology Today 1, 61 (1967)Google Scholar
  9. 9.
    Chawathe, Y., Ramabhadran, S., Ratnasamy, S., LaMarcay, A., Shenker, S., Hellersteinz, J.: A Case Study in Building Layered DHT Applications. In: Proc. of SIGCOMM 2005, August 2005, Philadelphia, Pennsylvania, USA (2005)Google Scholar
  10. 10.
    Andrzejak, A., Xu, Z.: Scalable, Efficient Range Queries for Grid Information Services. In: Proc. of the Second IEEE International Conference on Peer-to-Peer Computing (P2P’2002), September 2002, Linköping, Sweden (2002)Google Scholar
  11. 11.
    ShuiChao, et al.: Cactus: a new constant-degree and fault tolerate P2P overlay. In: The ninth Pacific Rim Internatianal workshop on Multi-Agents, Guilin, China (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Shui Chao
    • 1
  • Zhou Pen
    • 1
  • JiaYan
    • 1
  • Zhou Bing
    • 1
  1. 1.School of ComputerNational University of Defense TechnologyChangshaChina

Personalised recommendations