Cactus: A New Constant-Degree and Fault Tolerate P2P Overlay

  • ShuiChao
  • Huaiming Wang
  • ZhouPen
  • JiaYan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4088)


A fundament tradeoff issue observed by Ratnasamy is a hotspot in designing distribute hash table(DHT) in P2P network. Three constant-degree systems had proposed recently, but the common weakness of them is handle node leaving without inform its neighbors in advance, and optimize the degree and load balance is another question. In this paper, a constant-degree system has proposed named Cactus which based on the 2-tree and CCC hypercube. Its number of neighbor is 6, and the time complexity of key lookup is O(d) when number of nodes is no more than d*2d, d is the degree of CCC. In this paper, we will introduce the topology, routing algorithm, node join and leave for Cactus. The experimentations show that Cactus is better in optimizing the degree and load balance, faults tolerate and no worse in other performance compare to other constant-degree system.


Load Balance Distribute Hash Table Neighbor Table Network Diameter Father Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ratnasamy, S., Shenker, S., Stoica, I.: Routing Algorithms for DHTs: Some Open Questions. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS 2002. LNCS, vol. 2429, Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Ratnasamy, S., Fancis, P., Handley, M.: A scalable content-addressable network. In: Proceedings of ACM SIGCOMM, San Diego, CA, USA (2001)Google Scholar
  3. 3.
    Chord, S.I.: A scalable peer-to-peer lookup protocol for Internet applications. In: Proceedings of SIGCOMM, San Diego (2001)Google Scholar
  4. 4.
    Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location and routing for large-scale peeer-to-peer systems. In: Proceedings of the 18th IFIP/ACM Internatinal conference on Distributed Systems Platforms, Heidelberg, Germany (2001)Google Scholar
  5. 5.
    Zhao, B.Y., Tapestry.: A resilient global-scale overlay for service deployment. IEEE Journal on Selected Areas in communications, 22(1) (2004)Google Scholar
  6. 6.
    Shen, H.Y., Xu, C.Z., Chen, G.C.: A new constant-degree and lookup efficient P2P overlay network. In: Proceedings of International Parallel and Distributed Symposium (IPDPS 2004), Santa Fe, USA (2004)Google Scholar
  7. 7.
    Malkhi d., Viceroy, R.D.: A scalable and dynamic emulation of the butterfly. In: Proceedings of Principles of Distributed Computing (PODC 2002), Monterey, CA, USA (2002)Google Scholar
  8. 8.
    Kaashoek, M.F., Koorde, K.R.: A simple degree optimal distributed hash table. In: Proceeding of the 2nd International Workshop on P2P Systems(IPIPS 2003), Berkeley,CA, USA (2003)Google Scholar
  9. 9.
    Perparata, F.P., Vuillemin, J.: The cube-connented cycles: A versatile network for parallel computation. Communications of the ACM 24(5), 300–309 (1981)CrossRefGoogle Scholar
  10. 10.
    Wen, D., Yan, J., Wen-qiang, S., Peng, Z.: A P2P Approach for Global Computing. In: International Parallel and Distributed Processing Symposium (IPDPS 2003), Nice, France, vol. 4, pp. 248–255. IEEE Computer Society, Los Alamitos (2003)Google Scholar
  11. 11.
    Schlosser, M., Sintek, M., Decker, S., Nejdl, W.: HyperCuP—Hypercubes, Ontologies and Efficient Search on P2P Networks. In: Moro, G., Koubarakis, M. (eds.) AP2PC 2002. LNCS (LNAI), vol. 2530, Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Aberer, K., Cudre-Mauroux, P., Datta, A., Despotovic, Z., Hauswirth, M., Punceva, M., Schmidt, R.: P-Grid: A Self-organizing Structured P2P System. ACM SIGMOD Record, 32(3) (2003)Google Scholar
  13. 13.
    Qutaibah, M., Malluhi, Magdy, A.: The Hierarchical Hypercube: A new Interconnection Topology for Massively parallel systems. IEEE Trans. Parallel Distrib. Syst. 5(1), 17–30 (1994)CrossRefGoogle Scholar
  14. 14.
    Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A Scalable Content-Addressable Network. In: Proceedings of ACM SIGCOMM, San Diego, California, USA (2001)Google Scholar
  15. 15.
    Gummadi, K., Gummadi, R., Gribble, S., Ratnasamy, S., Schenker, S., Stoica, I.: The Impact of DHT Routing Geometry on Resilience and Proximity. In: Proceedings of ACM SIGCOMM, Germany, pp. 381–394. ACM Press, Karlsruhe (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • ShuiChao
    • 1
  • Huaiming Wang
    • 1
  • ZhouPen
    • 1
  • JiaYan
    • 1
  1. 1.School of ComputerNational University of Defense TechnologyChangshaChina

Personalised recommendations