Hybrid Dissemination Based Scalable and Adaptive Context Delivery for Ubiquitous Computing

  • Lenin Mehedy
  • Md. Kamrul Hasan
  • Young Koo Lee
  • Sungyoung Lee
  • Sang Man Han
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4096)


Context delivery is an inevitable issue for ubiquitous computing. Context-aware middlewares perform all the functions of context sensing, inferring and delivery to context-aware applications. But one of the major issues for these middlewares is to devise a context delivery scheme that is scalable as well as efficient. Pure unicast or pure broadcast based dissemination can not provide scalability as well as less average latency. In this paper we present a scalable context delivery mechanism for context-aware middlewares based on hybrid data dissemination technique where the most requested data are broadcasted and the rest are delivered through unicast. Our scheme is adaptive in the sense that it dynamically differentiates hot (most requested) and cold (less requested) data according to request rate and waiting time. Inclusion of lease mechanism and bandwidth division further allows us to reduce network traffic and average latency. We validated our claim through extensive simulation.


Ubiquitous Computing Average Latency Context Data Request Rate Popular Item 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Weiser, M.: The Computer for the 21st Century. In: Scientific America, pp. 94–104 (September 1991); reprinted in IEEE Pervasive Computing, pp. 19–25 (2002)Google Scholar
  2. 2.
    Dey, A.K., Abowd, G.D.: Towards a Better Understanding of Context and Context-Awareness. In: Proc. of the 2000 Conference on Human Factors in Computing Systems, The Hague, The Netherlands (April 2000)Google Scholar
  3. 3.
    Hung, N.Q., Shehzad, A., Kiani, S.L., Riaz, M., Lee, S.Y.: Developing Context-Aware Ubiquitous Computing Systems with a Unified Middleware Framework. In: Yang, L.T., Guo, M., Gao, G.R., Jha, N.K. (eds.) EUC 2004. LNCS, vol. 3207, pp. 672–681. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Baldauf, M., Dustdar, S.: A Survey on Context-aware systems. Int. J. of Ad Hoc and Ubiquitous Computing (forthcoming)Google Scholar
  5. 5.
    Acharya, S., Franklin, M., Zdonik, S.: Balancing push and pull data broadcast. In: ACM SIGMOD (May 1997)Google Scholar
  6. 6.
    Stanthatos, K., Roussopoulos, N., Baras, J.S.: Adaptive data broadcast in hybrid networks. In: The 23rd Int. Conf. on VLDB, vol. 30(2) (September 1997)Google Scholar
  7. 7.
    Beaver, J., Morsillo, N., Pruhs, K., Chrysanthis, P.K.: Scalable Dissemination: What’s Hot and What’s Not. In: The Seventh Int. Workshop on the Web and Databases (WebDB 2004), Paris, France, June 17-18 (2004)Google Scholar
  8. 8.
    Gifford, D.: Polychannel Systems for Mass Digital Communications. CACM 33(2), 141–151 (1990)Google Scholar
  9. 9.
    Hall, A., Taubig, H.: Comparing push- and pull-based broadcasting or: Would “microsoft watches” profit from a transmitter? In: Jansen, K., Margraf, M., Mastrolli, M., Rolim, J.D.P. (eds.) WEA 2003. LNCS, vol. 2647, Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Triantafillou, P., Harpantidou, R., Paterakis, M.: High performance data broadcasting systems. Mobile Networks and Applications 7, 279–290 (2002)CrossRefGoogle Scholar
  11. 11.
    Aksoy, D., Franklin, M.: RxW: A scheduling approach for large-scale on-demand data broadcast. IEEE/ACM Transactions on Networking 7(6), 846–860 (1999)CrossRefGoogle Scholar
  12. 12.
    Shehzad, A., Hung, N.Q., Pham, K.A., Lee, S.Y.: Formal Modeling in Context Aware Systems. In: Proc. of Workshop on Modeling and Retrieval of Context, CEUR, Germany, vol. 114 (2004) ISSN 613-0073Google Scholar
  13. 13.
    Yau, S.S., Chandrasekar, D., Huang, D.: An Adaptive, Lightweight and Energy-Efficient Context Discovery Protocol for Ubiquitous Computing Environments. In: The 10th IEEE International Workshop on Future Trends of Distributed Computing Systems (FTDCS 2004) (2004)Google Scholar
  14. 14.
    Yau, S.S., Karim, F., Wang, Y., Wang, B., Gupta, S.: Reconfigurable Context-Sensitive Middleware for Pervasive Computing. IEEE Pervasive Computing 1(3), 33–40 (2002)CrossRefGoogle Scholar
  15. 15.
    Li, W.: References on Zipf’s Law, http://www.nslij-genetics.org/wli/zipf/
  16. 16.
  17. 17.
    Shehzad, A., Hung, N.Q., Anh, K.P.M., Riaz, M., Liaquat, S., Lee, Y.K., Lee, S.Y.: Middleware Infrastructure for Context-aware Ubiquitous Computing Systems. CAMUS Technical Report (TR-V3.2) (February 2005), http://oslab.khu.ac.kr/camus

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Lenin Mehedy
    • 1
  • Md. Kamrul Hasan
    • 1
  • Young Koo Lee
    • 1
  • Sungyoung Lee
    • 1
  • Sang Man Han
    • 1
  1. 1.Real Time & Multimedia Lab, Department of Computer EngineeringKyung Hee UniversityRepublic of Korea

Personalised recommendations