Multi-user Diversity for IEEE 802.11 Infrastructure Wireless LAN

  • Sung Won Kim
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4096)


To realize high data rate wireless communication systems, much attention is being payed to multi-user diversity due to large bandwidth availability. Multi-user diversity based opportunistic scheduling is a modern view communication over fading wireless channels, whereby, unlike rate adaptation based schemes, channel variations are exploited rather than mitigated. This paper proposes a multi-user diversity scheme for IEEE 802.11 infrastructure wireless LAN to enhance the throughput. Numerical investigations show the throughput superiority of the scheme over IEEE 802.11 standard and other method.


Access Point Transmission Control Protocol Medium Access Control Protocol System Throughput Contention Window 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Knopp, R., Humblet, P.A.: Information capacity and power control in single cell multiuser communications. In: Proc. IEEE ICC 1995, pp. 331–335 (1995)Google Scholar
  2. 2.
    Ajib, W., Haccoun, D.: An overview of scheduling algoriths in MIMO-based fourth-generation wireless systems. IEEE Network 19, 43–48 (2005)CrossRefGoogle Scholar
  3. 3.
    Gyasi-Agyei, A.: Multiuser diversity based opportunistic scheduling for wireless data networks. IEEE Commun. Lett. 9, 670–672 (2005)CrossRefGoogle Scholar
  4. 4.
    IS-856: CDMA 2000 standard: High rate packet data air interface specification (2000)Google Scholar
  5. 5.
    Wang, J., Zhai, H., Fang, Y.: Opportunistic packet scheduling and media access control for wireless LANs and multi-hop ad hoc networks. In: Proc. IEEE WCNC 2004, Atlanta, Georgia, pp. 1234–1239 (2004)Google Scholar
  6. 6.
    Grilo, A., Nunes, M.: Performance evaluation of IEEE 802.11e. In: Proc. IEEE PIMRC 2002, Lisboa, Portugal (2002)Google Scholar
  7. 7.
    Pilosof, S., Ramjee, R., Raz, D., Shavitt, Y., Sinha, P.: Understanding TCP fairness over wireless LAN. In: Proc. IEEE Infocom 2003, San Francisco, CA, USA (2003)Google Scholar
  8. 8.
    Kim, S.W., Kim, B., Fang, Y.: Downlink and uplink resource allocation in IEEE 802.11 wireless LANs. IEEE Trans. Veh. Technol. 54, 320–327 (2005)CrossRefGoogle Scholar
  9. 9.
    Kim, S.W., Kim, B.: Reource allocation based on traffic load over relayed wireless access networks. In: Yang, L.T., Zhou, X.-s., Zhao, W., Wu, Z., Zhu, Y., Lin, M. (eds.) ICESS 2005. LNCS, vol. 3820, pp. 441–451. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    IEEE Std 802.11b-1999: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Higher-Speed Physical Layer Extension in the 2.4 GHz Band (1999)Google Scholar
  11. 11.
    Kamerman, A., Monteban, L.: WaveLAN-II: A high-performance wireless LAN for the unlicensed band. Bell Labs Tech. J. 2, 118–133 (1997)CrossRefGoogle Scholar
  12. 12.
    Qiao, D., Choi, S., Shin, K.G.: Goodput analysis and link adaptation for IEEE 802.11a wireless LANs. IEEE Trans. Mob. Comput. 1, 278–292 (2002)CrossRefGoogle Scholar
  13. 13.
    Holland, G., Vaidya, N., Bahl, P.: A rate-adaptive MAC protocol for multi-hop wireless networks. In: Proc. IEEE/ACM MOBICOM 2001, Boston, MA, USA, pp. 236–251 (2001)Google Scholar
  14. 14.
    Rappaport, T.S.: Wireless communications: principles and practices, 2nd edn. Prentice-Hall, Englewood Cliffs (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Sung Won Kim
    • 1
  1. 1.School of Electrical Engineering and Computer ScienceYeungnam UniversityGyeongsangbuk-doKorea

Personalised recommendations