Hybrid Approach for Secure Mobile Agent Computations

  • J. Todd McDonald
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4074)


Mobile agent applications are particularly vulnerable to malicious parties and thus require more stringent security measures– benefiting greatly from schemes where cryptographic protocols are utilized. We review and analyze methods proposed for securing agent operations in the face of passive and active adversaries by means of secure multi-party computations. We examine the strengths and weaknesses of such techniques and pose hybrid schemes which reduce communication overhead and maintain flexibility in the application of particular protocols.


Mobile Agent Secure Computation Trusted Third Party Cryptographic Protocol Homomorphic Encryption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abadi, M., Feigenbaum, J.: Secure Circuit Evaluation: A Protocol Based on Hiding Information from an Oracle. J. of Crypto. 2, 1–12 (1990)MATHCrossRefMathSciNetGoogle Scholar
  2. Abadi, M., Feigenbaum, J., Kilian, J.: On hiding information from an oracle. J. of Comp. and Sys. Sci. 39, 21–50 (1989)MATHCrossRefMathSciNetGoogle Scholar
  3. Algesheimer, J., Cachin, C., Camenisch, J., Karjoth, G.: Cryptographic security for mobile code. In: Proc. of the 2001 IEEE Symp. on Security and Privacy, pp. 2–11 (2001)Google Scholar
  4. Bellare, M., Micali, S.: Non-Interactive Oblivious Transfer and Applications. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 547–557. Springer, Heidelberg (1990)Google Scholar
  5. Bellare, M., Micali, S., Rogaway, P.: The round complexity of secure protocols. In: Proc. of 22nd Annual ACM Sym. on Theory of Comp. (STOC), pp. 503–513 (1990)Google Scholar
  6. Ben-Or, M., Canetti, R., Goldreich, O.: Asynchronous secure communications. In: Proc. of 25th Annual ACM Symp. on Theory of Comp., pp. 52–61 (1993)Google Scholar
  7. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: Proc. of Annual ACM Symp. on Theory of Comp., pp. 1–10 (1988)Google Scholar
  8. Ben-Or, M., Kelmer, B., Rabin, T.: Asynchronous secure computations with optimal resilience. In: Proc. of 13th Annual ACM Symp. on Principles of Distributed Computing (PODC), pp. 183–192 (1994)Google Scholar
  9. Bierman, E., Cloete, E.: Classification of malicious host threats in mobile agent computing. In: Proc. of the 2002 Annual Research Conference of the South Africa IoCS and IToETT, Port Elizabeth, South Africa, pp. 141–148 (2002)Google Scholar
  10. Cachin, C., Camenisch, J., Kilian, J., Müller, J.: One-round secure computation and secure autonomous mobile agents. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 512–523. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: Proc. of the 42nd IEEE Symp. on Foundations of Comp. Sci., p. 136 (2001)Google Scholar
  12. Canetti, R.: Security and composition of multiparty cryptographic Protocols. J. of Cryp. 13(1), 143–202 (2000)MATHCrossRefMathSciNetGoogle Scholar
  13. Chaum, D., Crépeau, C., Damgard, I.: Multiparty unconditionally secure protocols (Extended Abstract). In: Proc. of the 20th Annual ACM Symp. on Theory of Comp., pp. 11–19 (1988)Google Scholar
  14. Cramer, R., Damgård, I.B., Dziembowski, S., Hirt, M., Rabin, T.: Efficient multiparty computations secure against an adaptive adversary. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 311–326. Springer, Heidelberg (1999)Google Scholar
  15. Cramer, R., Damgård, I.B., Nielsen, J.B.: Multiparty computation from threshold homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 280–300. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  16. Chaum, D., Damgård, I.B., van de Graaf, J.: Multiparty Computations Ensuring Privacy of Each Party’s Input and Correctness of the Result. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 87–119. Springer, Heidelberg (1988)Google Scholar
  17. Damgård, I.B., Nielsen, J.B.: Universally Composable Efficient Multiparty Computation from Threshold Homomorphic Encryption. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 247–264. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. Endsuleit, R., Mie, T.: Secure multi-agent computations. In: Proc. of Int’l. Conf. on Security and Mngmnt., pp. 149–155 (2003)Google Scholar
  19. Endsuleit, R., Wagner, A.: Possible attacks on and countermeasures for secure multi-agent computation. In: Proc. of Int’l. Conf. on Security and Management, pp. 221–227 (2004)Google Scholar
  20. Feigenbaum, J., Pinkas, B., Ryger, R., Saint Jean, F.: Secure computation of surveys. In: EU Workshop on Secure Multiparty Protocols (2004)Google Scholar
  21. Fitzi, M., Garay, J., Maurer, U., Ostravsky, R.: Minimal Complete Primitives for secure multi-party computation. J. of Crypto. 18, 37–61 (2005)MATHCrossRefGoogle Scholar
  22. Goldreich, O.: Secure multi-party computation. Working Draft, Version 1.2 (2000)Google Scholar
  23. Goldreich, O., Micali, S., Wigderson, A.: How to Play Any Mental Game. In: Proc. of the 19th Annual ACM Symp. on Theory of Comp., pp. 218–229 (1987)Google Scholar
  24. Hirt, M., Maurer, U.: Robustness for free in unconditional multi-party computation. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 101–118. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  25. Jansen, W., Karygiannis, T.: NIST Special Publication 800-19 - Mobile sgent decurity. National Institute of Standards and Technology (2000)Google Scholar
  26. Kilian, J.: Founding cryptography on oblivious transfer. In: Proc. of 20th Annual ACM Symp. on Theory of Computing, pp. 20–31 (1988)Google Scholar
  27. Loureiro, S., Molva, R.: Function hiding based on error correcting Codes. In: Proc. of the 1999 Int’l. Wrkshp. on Cryptographic Techniques and E-Commerce, CrypTEC 1999, pp. 92–98. City University of Hong Kong Press (1999)Google Scholar
  28. Malkhi, D., Nisan, D., Pinkas, B., Sella, Y.: FAIRPLAY-a secure two-party computation system. In: Proc. of 2004 USENIX Security Symp., pp. 287–302 (2004)Google Scholar
  29. McDonald, J.T., Yasinsac, A., Thompson, W.: Taxonomy of mobile Agent Security, submitted ACM Computing Surveys (2005), Available,
  30. Micali, S., Rogaway, P.: Secure computation. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 392–404. Springer, Heidelberg (1992)Google Scholar
  31. Naor, M., Nisim, K.: Communication complexity and secure function evaluation. In: Electronic Colloquium on Computational Complextiy (ECCC), vol. 8, p. 62 (2001)Google Scholar
  32. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: Proc. of SIAM Symposium on Discrete Algorithms, Washington, DC, pp. 448–457 (2001)Google Scholar
  33. Naor, M., Pinkas, B.: Distributed oblivious transfer. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 205–219. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  34. Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism design. In: Proc. of 1st ACM Conf. on Electronic Commerce, pp. 129–139 (1999)Google Scholar
  35. Neven, G., Van Hoeymissen, E., De Decker, B., Piessens, F.: Enabling secure distributed computations: Semi-trusted hosts and mobile agents. Net. and Info. Sys. J. 3(43), 1–18 (2000)Google Scholar
  36. Ostravsky, R., Yung, M.: How to withstand mobile virus attacks. In: Proc. of 10th Annual ACM Symp. on Principles of Distr. Comp., pp. 51–59 (1991)Google Scholar
  37. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority. In: Proc. of the 21st Annual ACM Symposium on Theory of Comp., Seattle, Washington, USA, pp. 73–85 (1989)Google Scholar
  38. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy momomorphisms. In: Demillo, R.A., et al. (eds.) Foundations of Secure Computation, pp. 169–177. Academic Press, London (1978)Google Scholar
  39. Sander, T., Tschudin, C.F.: Protecting mobile agents against malicious hosts. In: FC 1999. LNCS, vol. 1648, pp. 44–60. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  40. Shamir, A.: How to share a secret. Comm. of the ACM 22(11), 612–613 (1979)MATHCrossRefMathSciNetGoogle Scholar
  41. Tate, S.R., Xu, K.: Mobile agent security through multi-agent cryptographic protocols. In: Proc. of the 4th Int’l. Conf. on Internet Comp., pp. 462–468 (2003)Google Scholar
  42. Yao, A.C.: How to generate and exchange secrets. In: Proc. of the 27th IEEE Symposium on Found. of Comp. Sci., pp. 162–167 (1986)Google Scholar
  43. Yokoo, M., Suzuki, K.: Secure multi-agent dynamic programming based on homomorphic encryption and its application to combinatorial auctions. In: Proc. of the 1st Int’l. Joint Conf. on Autonomous Agents and Multiagent Systems, Bologna, Italy, pp. 112–119 (2002)Google Scholar
  44. Zhong, S., Yang, Y.R.: Verifiable distributed oblivious transfer and mobile agent security. In: Proc. of the 2003 Joint Workshop on Foundations of Mobile Comp., pp. 12–21. ACM Press, New York (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • J. Todd McDonald
    • 1
  1. 1.Florida State UniversityTallahasseeUSA

Personalised recommendations