Tableau Calculi for Answer Set Programming

  • Martin Gebser
  • Torsten Schaub
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4079)


We introduce a formal proof system based on tableau methods for analyzing computations made in Answer Set Programming (ASP). Our approach furnishes declarative and fine-grained instruments for characterizing operations as well as strategies of ASP-solvers. First, the granulation is detailed enough to capture the variety of propagation and choice operations of algorithms used for ASP; this also includes SAT-based approaches. Second, it is general enough to encompass the various strategies pursued by existing ASP-solvers. This provides us with a uniform framework for identifying and comparing fundamental properties of algorithms. Third, the approach allows us to investigate the proof complexity of algorithms for ASP, depending on choice operations. We show that exponentially different best-case computations can be obtained for different ASP-solvers. Finally, our approach is flexible enough to integrate new inference patterns, so to study their relation to existing ones. As a result, we obtain a novel approach to unfounded set handling based on loops, being applicable to non-SAT-based solvers. Furthermore, we identify backward propagation operations for unfounded sets.


Logic Program Loop Formula Stable Model Semantic Proof Complexity Tableau Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press, Cambridge (2003)MATHCrossRefGoogle Scholar
  2. 2.
    Mitchell, D.: A SAT solver primer. Bulletin of the European Association for Theoretical Computer Science 85, 112–133 (2005)MATHGoogle Scholar
  3. 3.
    Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program by SAT solvers. Artificial Intelligence 157(1-2), 115–137 (2004)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Giunchiglia, E., Lierler, Y., Maratea, M.: A SAT-based polynomial space algorithm for answer set programming. In: Delgrande, J., Schaub, T. (eds.) Proceedings of the Tenth International Workshop on Non-Monotonic Reasoning, pp. 189–196 (2004)Google Scholar
  5. 5.
    Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model semantics. Artificial Intelligence 138(1-2), 181–234 (2002)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Faber, W.: Enhancing Efficiency and Expressiveness in Answer Set Programming Systems. Dissertation, Technische Universität Wien (2002)Google Scholar
  7. 7.
    Anger, C., Gebser, M., Linke, T., Neumann, A., Schaub, T.: The nomore++ approach to answer set solving. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS, vol. 3835, pp. 95–109. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    D’Agostino, M., Gabbay, D., Hähnle, R., Posegga, J. (eds.): Handbook of Tableau Methods. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  9. 9.
    Leone, N., Faber, W., Pfeifer, G., Eiter, T., Gottlob, G., Koch, C., Mateis, C., Perri, S., Scarcello, F.: The DLV system for knowledge representation and reasoning. ACM Transactions on Computational Logic (to appear, 2006)Google Scholar
  10. 10.
    Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the ACM 7, 201–215 (1960)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Communications of the ACM 5, 394–397 (1962)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Järvisalo, M., Junttila, T., Niemelä, I.: Unrestricted vs restricted cut in a tableau method for Boolean circuits. Annals of Mathematics and Artificial Intelligence 44(4), 373–399 (2005)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Junttila, T.A., Niemelä, I.: Towards an efficient tableau method for boolean circuit satisfiability checking. In: Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach, U., Kerber, M., Lau, K.-K., Sagiv, Y., Stuckey, P.J., et al. (eds.) CL 2000. LNCS, vol. 1861, pp. 553–567. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  14. 14.
    Beame, P., Pitassi, T.: Propositional proof complexity: Past, present, and future. Bulletin of the European Association for Theoretical Computer Science 65, 66–89 (1998)MATHMathSciNetGoogle Scholar
  15. 15.
    Hähnle, R.: Tableaux and related methods. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 100–178. Elsevier and MIT Press (2001)Google Scholar
  16. 16.
    Fitting, M.: Tableaux for logic programming. J. Automated Reasoning 13(2), 175–188 (1994)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Pearce, D., de Guzmán, I., Valverde, A.: A tableau calculus for equilibrium entailment. In: Dyckhoff, R. (ed.) TABLEAUX 2000. LNCS, vol. 1847, pp. 352–367. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  18. 18.
    Olivetti, N.: Tableaux for nonmonotonic logics. In: [8], pp. 469–528Google Scholar
  19. 19.
    Bonatti, P.: Resolution for skeptical stable model semantics. J. Automated Reasoning 27(4), 391–421 (2001)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Calimeri, F., Faber, W., Leone, N., Pfeifer, G.: Pruning operators for answer set programming systems. Technical Report INFSYS RR-1843-01-07, Technische Universität Wien (2001)Google Scholar
  21. 21.
    van Gelder, A., Ross, K., Schlipf, J.: The well-founded semantics for general logic programs. Journal of the ACM 38(3), 620–650 (1991)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Lee, J.: A model-theoretic counterpart of loop formulas. In: Kaelbling, L., Saffiotti, A. (eds.) Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence, Professional Book Center, pp. 503–508 (2005)Google Scholar
  23. 23.
    Fitting, M.: Fixpoint semantics for logic programming: A survey. Theoretical Computer Science 278(1-2), 25–51 (2002)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Clark, K.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data Bases, pp. 293–322. Plenum Press, New York (1978)Google Scholar
  25. 25.
    Apt, K., Blair, H., Walker, A.: Towards a theory of declarative knowledge. In: Minker, J. (ed.) Found. of Deductive Databases and Logic Programming, pp. 89–148. Morgan Kaufmann, San Francisco (1987)Google Scholar
  26. 26.
    Lifschitz, V., Razborov, A.: Why are there so many loop formulas? ACM Transactions on Computational Logic (to appear, 2006)Google Scholar
  27. 27.
    Fages, F.: Consistency of Clark’s completion and the existence of stable models. Journal of Methods of Logic in Computer Science 1, 51–60 (1994)Google Scholar
  28. 28.
    Babovich, Y., Lifschitz, V.: Computing answer sets using program completion. Draft (2003)Google Scholar
  29. 29.
    Giunchiglia, E., Maratea, M.: On the relation between answer set and SAT procedures (or, between cmodels and smodels). In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668, pp. 37–51. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  30. 30.
    Konczak, K., Linke, T., Schaub, T.: Graphs and colorings for answer set programming. Theory and Practice of Logic Programming 6(1-2), 61–106 (2006)MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Anger, C., Gebser, M., Schaub, T.: What’s a head without a body. In: Brewka, G. (ed.) Proceedings of the Seventeenth European Conference on Artificial Intelligence. IOS Press, Amsterdam (to appear, 2006)Google Scholar
  32. 32.
    Simons, P.: Extending and Implementing the Stable Model Semantics. Dissertation, Helsinki University of Technology (2000)Google Scholar
  33. 33.
    Anger, C., Gebser, M., Schaub, T.: Approaching the core of unfounded sets. In: Dix, J., Hunter, A. (eds.) Proceedings of the Eleventh International Workshop on Non-Monotonic Reasoning (to appear, 2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Martin Gebser
    • 1
  • Torsten Schaub
    • 1
  1. 1.Institut für InformatikUniversität PotsdamPotsdam

Personalised recommendations