Skip to main content

Coinductive Logic Programming

  • Conference paper
Logic Programming (ICLP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 4079))

Included in the following conference series:

Abstract

We extend logic programming’s semantics with the semantic dual of traditional Herbrand semantics by using greatest fixed-points in place of least fixed-points. Executing a logic program then involves using coinduction to check inclusion in the greatest fixed-point. The resulting coinductive logic programming language is syntactically identical to, yet semantically subsumes logic programming with rational terms and lazy evaluation. We present a novel formal operational semantics that is based on synthesizing a coinductive hypothesis for this coinductive logic programming language. We prove that this new operational semantics is equivalent to the declarative semantics. Our operational semantics lends itself to an elegant and efficient goal directed proof search in the presence of rational terms and proofs. We describe a prototype implementation of this operational semantics along with applications of coinductive logic programming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Apt, K.R.: Logic programming. In: Handbook of Theoretical Computer Science, ch. 15, pp. 493–574. MIT Press, Cambridge (1990)

    Google Scholar 

  2. Barwise, J., Moss, L.: Vicious Circles: On the Mathematics of Non-Wellfounded Phenomena. CSLI Publications, Stanford (1996)

    MATH  Google Scholar 

  3. Colmerauer, A.: Equations and inequations on finite and infinite trees. In: Proc. FGCS 1984, Tokyo, pp. 85–99 (1984)

    Google Scholar 

  4. Courcelle, B.: Fundamental properties of infinite trees. TCS, 95–212 (1983)

    Google Scholar 

  5. Gupta, G.: Verifying Properties of Cyclic Data-structures with Tabled Unification. Internal Memo. New Mexico State University (February 2000)

    Google Scholar 

  6. Gupta, G., Pontelli, E.: Constraint-based Specification and Verification of Real-time Systems. In: Proc. IEEE Real-time Symposium 1997, pp. 230–239 (1997)

    Google Scholar 

  7. Gupta, G.: Next Generation of Logic Programming Systems. Technical Report UTD-42-03, University of Texas, Dallas (2003)

    Google Scholar 

  8. Hanus, M.: Integration of functions into LP. J. Logic Prog. 19&20, 583–628 (1994)

    Article  MathSciNet  Google Scholar 

  9. Jaffar, J., Santosa, A.E., Voicu, R.: A CLP proof method for timed automata. In: RTSS, pp. 175–186 (2004)

    Google Scholar 

  10. Jaffar, J., Stuckey, P.J.: Semantics of infinite tree LP. TCS 46(2–3), 141–158 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  11. Jaume, M.: Logic programming and co-inductive definitions. In: Clote, P.G., Schwichtenberg, H. (eds.) CSL 2000. LNCS, vol. 1862, p. 343. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  12. Lloyd, J.W.: Foundations of LP, 2nd edn. Springer, Heidelberg (1987)

    Google Scholar 

  13. Mallya, A.: Deductive Multi-valued Model Checking. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668, pp. 297–310. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Nait-Abdallah, M.A.: On the Interpretation of Infinite Computations in Logic Programming. In: ICALP 1984, pp. 358–370 (1984)

    Google Scholar 

  15. Pierce, B.: Types and Programming Languages. MIT Press, Cambridge (2002)

    Google Scholar 

  16. Ramakrishna, Y., Ramakrishnan, C.R., Ramakrishnan, I.V., Warren, D.S., et al.: Efficient Model Checking Using Tabled Resolution. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 143–154. Springer, Heidelberg (1997)

    Google Scholar 

  17. Rocha, R., Silva, F., Costa, V.S.: Theory and Practice of Logic Programming 5(1-2). 161-205 Tabling Engine That Can Exploit Or-Parallelism. In: Codognet, P. (ed.) ICLP 2001. LNCS, vol. 2237, pp. 43–58. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  18. Simon, L.: Coinductive LP. Internal memo, UT Dallas (March 2004)

    Google Scholar 

  19. Simon, L., Mallya, A., Bansal, A., Gupta, G.: Co-Logic Programming: Extending Logic Programming with Coinduction. Tech. Report, UT Dallas, UTDCS-21-06

    Google Scholar 

  20. Simon, L., Mallya, A., Bansal, A., Gupta, G.: Coinductive Logic Programming. Technical Report, UT Dallas, UTDCS-11-06 (March 2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Simon, L., Mallya, A., Bansal, A., Gupta, G. (2006). Coinductive Logic Programming. In: Etalle, S., Truszczyński, M. (eds) Logic Programming. ICLP 2006. Lecture Notes in Computer Science, vol 4079. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11799573_25

Download citation

  • DOI: https://doi.org/10.1007/11799573_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36635-5

  • Online ISBN: 978-3-540-36636-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics