Using Answer Set Programming for the Automatic Compilation of Assessment Tests

  • Petra Schwaiger
  • Burkhard Freitag
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4079)


Life-long learning is more and more playing a key role for economical, personal and social success. Therefore the management and development of skills and knowledge is of premier importance in industry and, on the other hand, a major expense factor. So called examination management systems assist teachers and trainers through an automatic compilation of documents, in particular assessment tests, based on user defined requirements and constraints and thus help reduce costs.

In this paper we present and discuss a solution of the underlying general problem using Answer Set Programming and show the power and advantages of our approach.


Logic Program Logic Programming Stable Model Assessment Test Slight Dependency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baselice, S., Bonatti, P.A., Gelfond, M.: Towards an Integration of Answer Set and Constraint Solving. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668, pp. 52–66. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Calimeri, F., Faber, W., Leone, N., Perri, S., Pfeifer, G.: DLV - declarative problem solving using answer set programming. In: Esposito, F. (ed.) AI*IA 2001. LNCS, vol. 2175. Springer, Heidelberg (2001)Google Scholar
  3. 3.
    Deakin KM Knowledge presenter Homepage,
  4. 4.
    Eiter, T., Faber, W., Leone, N., Pfeifer, G.: The diagnosis frontend of the dlv system. AI Communications – The European Journal on Artificial Intelligence 12, 99–111 (1999)MathSciNetGoogle Scholar
  5. 5.
    Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: A logic programming approach to knowledge-state planning, II: the small DLVK system. Artificial Intelligence 144(1-2), 157–211 (2003)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Erdem, E.: Theory and applications of answer set programming. PhD thesis, Technische Universität Wien (2002)Google Scholar
  7. 7.
    Erdem, E., Lifschitz, V., Ringe, D.: Temporal phylogenetic networks and logic programming. Theory and Practice of Logic Programming (2005)Google Scholar
  8. 8.
    Exam Builder e-learning solutions for professionals Homepage,
  9. 9.
    Gelfond, M., Leone, N.: Logic programming and knowledge representation — the A-Prolog perspective. Artificial Intelligence 138(1-2), 3–38 (2002)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R.A., Bowen, K. (eds.) Proceedings of the Fifth International Conference on Logic Programming, pp. 1070–1080. MIT Press, Cambridge (1988)Google Scholar
  11. 11.
    Ianni, G., Panetta, C., Ricca, F.: Specification of assessment-test criteria through ASP specifications. In: Vos, M.D., Provetti, A. (eds.) Answer Set Programming. CEUR Workshop Proceedings, vol. 142, (2005)Google Scholar
  12. 12.
    IFIS. Homepage Assessment.Suite,
  13. 13.
    InteLeC. Homepage InteLeC,
  14. 14.
    Lifschitz, V.: Introduction to answer set programming (Unpublished draft)Google Scholar
  15. 15.
    Lifschitz, V.: Action languages, answer sets and planning. In: The Logic Programming Paradigm (1999)Google Scholar
  16. 16.
    Niemelä, I., Simons, P.: Extending the Smodels system with cardinality and weight constraints. In: Minker, J. (ed.) Logic-Based Artificial Intelligence, ch. 21, pp. 491–521. Kluwer Academic Publishers, Dordrecht (2000)Google Scholar
  17. 17.
    Niemelä, I., Simons, P., Syrjänen, T.: Smodels: a system for answer set programming. In: Proceedings of the 8th International Workshop on Non-Monotonic Reasoning (cs.AI/0003073), Breckenridge, Colorado, USA (April 2000) cs.AI/0003033Google Scholar
  18. 18.
    Nogueira, M., Balduccini, M., Gelfond, M., Watson, R., Barry, M.: An A-Prolog Decision Support System for the Space Shuttle. In: Ramakrishnan, I.V. (ed.) PADL 2001. LNCS, vol. 1990, pp. 169–183. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  19. 19.
    Soininen, T., Niemelä, I., Tiihonen, J., Sulonen, R.: Representing configuration knowledge with weight constraint rules. In: Proc. AAAI Spring Symp. on Answer Set Programming: Towards Efficient and Scalable Knowledge (2001)Google Scholar
  20. 20.
    Syrjänen, T.: Cardinality Constraint Programs. In: Alferes, J.J., Leite, J.A. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 187–199. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  21. 21.
    Syrjänen, T.: Lparse 1.0 – User’s ManualGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Petra Schwaiger
    • 1
  • Burkhard Freitag
    • 1
  1. 1.University of PassauGermany

Personalised recommendations