Advertisement

Modelling Biological Networks by Action Languages Via Answer Set Programming

  • Susanne Grell
  • Torsten Schaub
  • Joachim Selbig
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4079)

Abstract

We describe an approach to modelling biological networks by action languages via answer set programming. To this end, we propose an action language for modelling biological networks, building on previous work by Baral et al. We introduce its syntax and semantics along with a translation into answer set programming. Finally, we describe one of its applications, namely, the sulfur starvation response-pathway of the model plant Arabidopsis thaliana and sketch the functionality of our system and its usage.

Keywords

Lateral Root Logic Program Lateral Root Formation Action Language Default Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Reddy, V., Mavrovouniotis, M., Liebman, M.: Petri net representations in metabolic pathways. In: Proc. First ISMB, pp. 328–336 (1993)Google Scholar
  2. 2.
    Pinney, J.W., Westhead, D.R., McConkey, G.A.: Petri net representations in systems biology. Biochem. Soc. Trans. 31(pt 6), 1513–1515 (2003)CrossRefGoogle Scholar
  3. 3.
    Bonarius, H.P.J., Schmid, G., Tramper, J.: Flux analysis of underdetermined metabolic networks: The quest for the missing constraints. Trends Biotechnol. 15, 308–314 (1997)CrossRefGoogle Scholar
  4. 4.
    Shmulevich, I., Dougherty, E., Kim, S., Zhang, W.: Probabilistic boolean networks: A rule-based uncertainty model for gene regulatory networks. Bioinformatics 18(2), 261–274 (2002)CrossRefGoogle Scholar
  5. 5.
    Baral, C., Chancellor, K., Tran, N., Tran, N., Joy, A., Berens, M.: A knowledge based approach for representing and reasoning about signaling networks. In: ISMB, pp. 15–22 (2004)Google Scholar
  6. 6.
    Tran, N., Baral, C.: Reasoning about triggered actions in ansprolog and its application to molecular interactions in cells. In: KR 2004, pp. 554–564 (2004)Google Scholar
  7. 7.
    Gelfond, M., Lifschitz, V.: Representing action and change by logic programs. Journal of Logic Programming 17, 301–321 (1993)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Gelfond, M., Lifschitz, V.: Action languages. Electron. Trans. Artif. Intell. 2, 193–210 (1998)MathSciNetGoogle Scholar
  9. 9.
    Giunchiglia, E., Lifschitz, V.: An action language based on causal explanation: preliminary report. In: AAAI/IAAI, pp. 623–630. AAAI Press, Menlo Park (1998)Google Scholar
  10. 10.
    Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: Planning under Incomplete Knowledge. In: Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach, U., Kerber, M., Lau, K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 807–821. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    Tran, N., Baral, C., Shankland, C.: Issues in reasoning about interaction networks in cells: Necessity of event ordering knowledge. In: AAAI, pp. 676–681. AAAI Press, Menlo Park (2005)Google Scholar
  12. 12.
    Grell, S.: Investigation and analysis of new approaches for representing and reasoning about biological networks using action languages. Diploma thesis, University of Potsdam and Max Planck Institute of Molecular Plant Physiology (2006)Google Scholar
  13. 13.
    Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press, Cambridge (2003)MATHCrossRefGoogle Scholar
  14. 14.
    Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Generation Computing 9, 365–385 (1991)CrossRefGoogle Scholar
  15. 15.
    Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model semantics. Artificial Intelligence 138(1-2), 181–234 (2002)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
  17. 17.
    Papatheodorou, I., Kakas, A.C., Sergot, M.J.: Inference of Gene Relations from Microarray Data by Abduction. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 389–393. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Chabrier-Rivier, N., Fages, F., Soliman, S.: The Biochemical Abstract Machine BIOCHAM. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 172–191. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Clarke, E., Grumberg, O., Peled, D.: Model checking. MIT Press, Cambridge (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Susanne Grell
    • 1
  • Torsten Schaub
    • 1
  • Joachim Selbig
    • 1
    • 2
  1. 1.Institut für InformatikUniversität PotsdamPotsdamGermany
  2. 2.Institut für BiologieUniversität PotsdamPotsdamGermany

Personalised recommendations