Generality Relations in Answer Set Programming

  • Katsumi Inoue
  • Chiaki Sakama
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4079)


This paper studies generality relations on logic programs. Intuitively, a program P 1 is more general than another program P 2 if P 1 gives us more information than P 2. In this paper, we define various kinds of generality relations over nonmonotonic programs in the context of answer set programming. The semantic properties of generality relations are investigated based on domain theory, and both a minimal upper bound and a maximal lower bound are constructed for any pair of logic programs. We also introduce the concept of strong generality between logic programs and investigate its relationships to strong equivalence. These results provide a basic theory to compare the degree of incompleteness between nonmonotonic logic programs, and also have important applications to inductive logic programming and multi-agent systems.


Logic Program Conjunctive Normal Form Inductive Logic Programming Domain Theory Disjunctive Normal Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ben-Eliyahu, R., Dechter, R.: Propositional semantics for disjunctive logic programs. Annals of Mathematics and Artificial Intelligence 12(1), 53–87 (1994)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Eiter, T., Tompits, H., Woltran, S.: On solution correspondences in answer-set programming. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence, pp. 97–102 (2005)Google Scholar
  3. 3.
    Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Generation Computing 9, 365–385 (1991)CrossRefGoogle Scholar
  4. 4.
    Gunter, C.A., Scott, D.S.: Semantic Domains. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, pp. 633–674. North-Holland, Amsterdam (1990)Google Scholar
  5. 5.
    Inoue, K., Sakama, C.: Disjunctive Explanations. In: Stuckey, P.J. (ed.) ICLP 2002. LNCS, vol. 2401, pp. 317–332. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Transactions on Computational Logic 2, 526–541 (2001)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Maher, M.J.: Equivalence of logic programs. In: Minker, J. (ed.) Foundations of Deductive Databases and Logic Programming, pp. 627–658. Morgan Kaufmann, San Francisco (1988)Google Scholar
  8. 8.
    Niblett, T.: A study of generalization in logic programs. In: Proceedings of the 3rd European Working Sessions on Learning (EWSL 1988), pp. 131–138. Pitman (1988)Google Scholar
  9. 9.
    Nienhuys-Cheng, S.-H., de Wolf, R.: Foundations of Inductive Logic Programming. LNCS (LNAI), vol. 1228. Springer, Heidelberg (1997)Google Scholar
  10. 10.
    Plotkin, G.D.: A note on inductive generalization. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence, vol. 5, pp. 153–163. Edinburgh University Press (1970)Google Scholar
  11. 11.
    Plotkin, G.D.: A powerdomain construction. SIAM Journal of Computing 5, 287–452 (1976)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Sakama, C.: Ordering default theories and nonmonotonic logic programs. Theoretical Computer Science 338, 127–152 (2005)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Sakama, C., Inoue, K.: Coordination Between Logical Agents. In: Leite, J.A., Torroni, P. (eds.) CLIMA 2004. LNCS (LNAI), vol. 3487, pp. 161–177. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Sakama, C., Inoue, K.: Combining Answer Sets of Nonmonotonic Logic Programs. In: Toni, F., Torroni, P. (eds.) CLIMA 2005. LNCS (LNAI), vol. 3900, pp. 320–339. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Sakama, C., Inoue, K.: Constructing consensus logic programs (submitted for publication, 2006)Google Scholar
  16. 16.
    Smyth, M.B.: Power domains. Journal of Computer and System Sciences 16, 23–36 (1978)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Zhang, G.Q., Rounds, W.C.: Semantics of logic programs and representation of Smyth powerdomain. In: Keimel, K., et al. (eds.) Proceedings of the 1st International Symposium on Domain Theory, pp. 151–181. Kluwer, Dordrecht (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Katsumi Inoue
    • 1
  • Chiaki Sakama
    • 2
  1. 1.National Institute of InformaticsTokyoJapan
  2. 2.Department of Computer and Communication SciencesWakayama UniversitySakaedani, WakayamaJapan

Personalised recommendations