Justifications for Logic Programs Under Answer Set Semantics

  • Enrico Pontelli
  • Tran Cao Son
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4079)


The paper introduces the notion of off-line justification for Answer Set Programming (ASP). Justifications provide a graph-based explanation of the truth value of an atom w.r.t. a given answer set. The notion of justification accounts for the specifics of answer set semantics. The paper extends also this notion to provide justification of atoms during the computation of an answer set (on-line justification), and presents an integration of on-line justifications within the computation model of Smodels. Justifications offer a basic data structure to support methodologies and tools for debugging answer set programs. A preliminary implementation has been developed in \(\mathbb{ASP-PROLOG}\).


Logic Program Logic Programming Negative Cycle Deductive Database Prolog Program 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anger, C., et al.: The nomore++ Approach to Answer Set Solving. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS, vol. 3835. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Apt, K., Bol, R.: Logic Programming and Negation: A Survey. J. Log. Program. 19/20 (1994)Google Scholar
  3. 3.
    Auguston, M.: Assertion Checker for the C Programming Language. AADEBUG (2000)Google Scholar
  4. 4.
    Baral, C.: Knowledge Representation, Reasoning, and Declarative Problem Solving. Cambridge University Press, Cambridge (2003)MATHCrossRefGoogle Scholar
  5. 5.
    Brass, S., et al.: Transformation-based bottom-up computation of the well-founded model. TPLP 1(5), 497–538 (2001)MATHMathSciNetGoogle Scholar
  6. 6.
    Costantini, S., et al.: On the Equivalence and Range of Applicability of Graph-based Representations of Logic Programs. Information Processing Letters 84(5), 241–249 (2002)MATHMathSciNetGoogle Scholar
  7. 7.
    Ducassé, M.: Opium: an Extendable Trace Analyzer for Prolog. J. Logic Progr. 39 (1999)Google Scholar
  8. 8.
    Elkhatib, O., et al.: A System for Reasoning about ASP in Prolog. In: PADL. Springer, Heidelberg (2004)Google Scholar
  9. 9.
    Gelfond, M., Lifschitz, V.: The Stable Model Semantics for Logic Programs. ILPS (1988)Google Scholar
  10. 10.
    Giunchiglia, E., Maratea, M.: On the Relation Between Answer Set and SAT Procedures (or, Between cmodels and smodels). In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668, pp. 37–51. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Leone, N., Pfeifer, G., Faber, W., Calimeri, F., Dell’Armi, T., Eiter, T., Gottlob, G., Ianni, G., Ielpa, G., Koch, C., Perri, S., Polleres, A.: The DLV system. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS, vol. 2424, p. 537. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Mallet, S., Ducasse, M.: Generating Deductive Database Explanations. In: ICLP. MIT, Cambridge (1999)Google Scholar
  13. 13.
    Marek, V.W., Truszczyński, M.: Stable Models and an Alternative Logic Programming Paradigm. In: The Logic Programming Paradigm. Springer, Heidelberg (1999)Google Scholar
  14. 14.
    Pemmasani, G., Guo, H.-F., Dong, Y., Ramakrishnan, C.R., Ramakrishnan, I.V.: Online Justification for Tabled Logic Programs. In: Kameyama, Y., Stuckey, P.J. (eds.) FLOPS 2004. LNCS, vol. 2998, pp. 24–38. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Pineda, A.: Object-oriented programming library O’Ciao. TR 6/99.0, UPM Madrid (1999)Google Scholar
  16. 16.
    Puebla, G., Bueno, F., Hermenegildo, M.V.: A Framework for Assertion-based Debugging in Constraint Logic Programming. In: Bossi, A. (ed.) LOPSTR 1999. LNCS, vol. 1817. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  17. 17.
    Roychoudhury, A., et al.: Justifying Proofs Using Memo Tables. In: PPDP. ACM Press, New York (2000)Google Scholar
  18. 18.
    Shapiro, E.: Algorithmic Program Diagnosis. In: POPL. ACM Press, New York (1982)Google Scholar
  19. 19.
    Simons, P., et al.: Extending and Implementing the Stable Model Semantics. Artif. Intell. 138(1-2) (2002)Google Scholar
  20. 20.
    Specht, G.: Generating Explanation Trees even for Negation in Deductive Databases. In: Workshop on Logic Programming Environments, Vancouver, pp. 8–13 (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Enrico Pontelli
    • 1
  • Tran Cao Son
    • 1
  1. 1.Dept. Computer ScienceNew Mexico State University 

Personalised recommendations