Advertisement

ACD Term Rewriting

  • Gregory J. Duck
  • Peter J. Stuckey
  • Sebastian Brand
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4079)

Abstract

In this paper we introduce Associative Commutative Distributive Term Rewriting (ACDTR), a rewriting language for rewriting logical formulae. ACDTR extends AC term rewriting by adding distribution of conjunction over other operators. Conjunction is vital for expressive term rewriting systems since it allows us to require that multiple conditions hold for a term rewriting rule to be used. ACDTR uses the notion of a “conjunctive context”, which is the conjunction of constraints that must hold in the context of a term, to enable the programmer to write very expressive and targeted rewriting rules. ACDTR can be seen as a general logic programming language that extends Constraint Handling Rules and AC term rewriting. In this paper we define the semantics of ACDTR and describe our prototype implementation.

Keywords

Operational Semantic Constraint Model Propagation History Execution State Equational Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdennadher, S.: Operational semantics and confluence of constraint propagation rules. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 252–266. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  2. 2.
    Abdennadher, S., Schütz, H.: CHR \(^\lor \): A Flexible Query Language. In: Andreasen, T., Christiansen, H., Larsen, H.L. (eds.) FQAS 1998. LNCS, vol. 1495, pp. 1–14. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Baader, F., Nipkow, T.: Term rewriting and all that. Cambridge University Press, Cambridge (1998)Google Scholar
  4. 4.
    Duck, G.J., Stuckey, P.J., García de la Banda, M., Holzbaur, C.: The Refined Operational Semantics of Constraint Handling Rules. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 90–104. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Frühwirth, T.: Theory and practice of constraint handling rules. Journal of Logic Programming 37, 95–138 (1998)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Menezes, L., Vitorino, J., Aurelio, M.: A High Performance CHR ∨  Execution Engine. In: Second Workshop on Constraint Handling Rules, Sitges, Spain (2005)Google Scholar
  7. 7.
    Stuckey, P.J., de la Banda, M.G., Maher, M.J., Marriott, K., Slaney, J.K., Somogyi, Z., Wallace, M., Walsh, T.: The G12 Project: Mapping Solver Independent Models to Efficient Solutions. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668, pp. 9–13. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Gregory J. Duck
    • 1
  • Peter J. Stuckey
    • 1
  • Sebastian Brand
    • 1
  1. 1.NICTA Victoria Laboratory, Department of Computer Science & Software EngineeringUniversity of MelbourneAustralia

Personalised recommendations