Advertisement

Towards “Propagation = Logic + Control”

  • Sebastian Brand
  • Roland H. C. Yap
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4079)

Abstract

Constraint propagation algorithms implement logical inference. For efficiency, it is essential to control whether and in what order basic inference steps are taken. We provide a high-level framework that clearly differentiates between information needed for controlling propagation versus that needed for the logical semantics of complex constraints composed from primitive ones. We argue for the appropriateness of our controlled propagation framework by showing that it captures the underlying principles of manually designed propagation algorithms, such as literal watching for unit clause propagation and the lexicographic ordering constraint. We provide an implementation and benchmark results that demonstrate the practicality and efficiency of our framework.

Keywords

Control Propagation Constraint Programming Control Information Logical Combination Constraint Logic Programming 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BCP04]
    Beldiceanu, N., Carlsson, M., Petit, T.: Deriving filtering algorithms from constraint checkers. In: Wallace [Wal04], pp. 107–122Google Scholar
  2. [BW05]
    Bacchus, F., Walsh, T.: Propagating logical combinations of constraints. In: Kaelbling, L.P., Saffiotti, A. (eds.) Proc. of International Joint Conference on Artificial Intelligence IJCAI 2005, pp. 35–40 (2005)Google Scholar
  3. [CCLW99]
    Cheng, B.M.W., Choi, K.M.F., Lee, J.H.-M., Wu, J.C.K.: Increasing constraint propagation by redundant modeling: An experience report. Constraints 4(2), 167–192 (1999)MATHCrossRefGoogle Scholar
  4. [CD96]
    Codognet, P., Diaz, D.: Compiling constraints in clp(FD). Journal of Logic Programming 27(3), 185–226 (1996)MATHCrossRefMathSciNetGoogle Scholar
  5. [CY05]
    Cheng, K.C.K., Yap, R.H.C.: Constrained decision diagrams. In: Veloso, M.M., Kambhampati, S. (eds.) Proc. of 20th National Conference on Artificial Intelligence AAAI 2005, pp. 366–371. AAAI Press, Menlo Park (2005)Google Scholar
  6. [FHK+02]
    Frisch, A.M., Hnich, B., Kiziltan, Z., Miguel, I., Walsh, T.: Global Constraints for Lexicographic Orderings. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 93–108. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. [Fre82]
    Freuder, E.C.: A sufficient condition for backtrack-free search. Journal of the ACM 29(1), 24–32 (1982)MATHCrossRefMathSciNetGoogle Scholar
  8. [Frü98]
    Frühwirth, T.: Theory and practice of Constraint Handling Rules. Journal of Logic Programming 37(1-3), 95–138 (1998)MATHCrossRefMathSciNetGoogle Scholar
  9. [HD91]
    Van Hentenryck, P., Deville, Y.: The Cardinality operator: A new logical connective for constraint logic programming. In: Furukawa, K. (ed.) Proc. of 8th International Conference on Logic Programming ICLP 1991, pp. 745–759. MIT Press, Cambridge (1991)Google Scholar
  10. [JM94]
    Jaffar, J., Maher, M.J.: Constraint logic programming: A survey. Journal of Logic Programming 19&20, 503–582 (1994)CrossRefMathSciNetGoogle Scholar
  11. [Kow79]
    Kowalski, R.A.: Algorithm = Logic + Control. Communications of the ACM 22(7), 424–436 (1979)MATHCrossRefGoogle Scholar
  12. [MMZ+01]
    Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient SAT solver. In: Proc. of 38th Design Automation Conference DAC 2001 (2001)Google Scholar
  13. [QW05]
    Quimper, C.-G., Walsh, T.: Beyond finite domains: The All Different and Global Cardinality constraints. In: van Beek, P. (ed.)Proc. of 11th International Conference on Principles and Practice of Constraint Programming (CP 2004). LNCS, vol. 3709, pp. 812–816. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. [Rég94]
    Régin, J.-C.: A filtering algorithm for constraints of difference in csps. In: Proc. of 12th National Conference on Artificial Intelligence AAAI 1994, pp. 362–367. AAAI Press, Menlo Park (1994)Google Scholar
  15. [Sar93]
    Saraswat, V.A.: Concurrent Constraint Programming. MIT Press, Cambridge (1993)Google Scholar
  16. [TBW04]
    Thiffault, C., Bacchus, F., Walsh, T.: Solving non-clausal formulas with DPLL search. In: Wallace [Wal04], pp. 663–678Google Scholar
  17. [Wal04]
    Wallace, M. (ed.): CP 2004. LNCS, vol. 3258. Springer, Heidelberg (2004)MATHGoogle Scholar
  18. [WNS97]
    Wallace, M.G., Novello, S., Schimpf, J.: ECLiPSe: A platform for constraint logic programming. ICL Systems Journal 12(1), 159–200 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Sebastian Brand
    • 1
  • Roland H. C. Yap
    • 2
  1. 1.National ICT Australia, Victoria Research LabMelbourneAustralia
  2. 2.School of ComputingNational University of SingaporeSingapore

Personalised recommendations