Advertisement

Pseudorandom Permutation Families over Abelian Groups

  • Louis Granboulan
  • Éric Levieil
  • Gilles Piret
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4047)

Abstract

We propose a general framework for differential and linear cryptanalysis of block ciphers when the block is not a bitstring. We prove piling-up lemmas for the generalized differential probability and the linear potential, and we study their lower bounds and average value, in particular in the case of permutations of \({\mathbb{F}_p}\). Using this framework, we describe a toy cipher, that operates on blocks of 32 decimal digits, and study its security against common attacks.

Keywords

block cipher arbitrary domain differential and linear cryptanalysis 

References

  1. 1.
    Baignères, T., Junod, P., Vaudenay, S.: How Far Can We Go Beyond Linear Cryptanalysis? In: Lee, P.J. (ed.) ASIACRYPT 2004, vol. 3329, pp. 432–450. Springer, Heidelberg (2004), http://lasecwww.epfl.ch/php_code/publications/search.php?ref=BJV04 CrossRefGoogle Scholar
  2. 2.
    Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like cryptosystems. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21. Springer, Heidelberg (1991)Google Scholar
  3. 3.
    Black, J., Rogaway, P.: Ciphers with Arbitrary Finite Domains. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 114–130. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Borisov, N., Chew, M., Johnson, R., Wagner, D.: Cryptanalysis of Multiswap (2001), http://www.cs.berkeley.edu/~rtjohnso/multiswap/
  5. 5.
    Chabaud, F., Vaudenay, S.: Links between differential and linear cryptalysis. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 356–365. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  6. 6.
    Daemen, J., Rijmen, V.: The Design of Rijndael: AES- the Advanced Encryption Standard. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  7. 7.
    Daemen, J., Rijmen, V.: AES proposal: Rijndael. In: First Advanced Encryption Standard (AES) Conference, Canada National Institute of Standards and Technology, Ventura (1998)Google Scholar
  8. 8.
    Daemen, J.: Rijmen. Statistics of Correlation and Differentials in Block Ciphers. Cryptology ePrint Archive, Report 2005/212 (2005), http://eprint.iacr.org/2005/212
  9. 9.
    Hirschfeld, J.W.P.: Projective Geometries Over Finite Fields. Oxford University Press, Oxford (1979)zbMATHGoogle Scholar
  10. 10.
    Lai, X., Massey, J.L., Murphy, S.: Markov ciphers and differential cryptanalysis. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 17–38. Springer, Heidelberg (1991)Google Scholar
  11. 11.
    Lipmaa, H., Wallén, J., Dumas, P.: On the Additive Differential Probability of Exclusive-Or. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 317–331. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)Google Scholar
  13. 13.
    Nyberg, K.: Differentially uniform mappings for cryptography. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 55–64. Springer, Heidelberg (1994)Google Scholar
  14. 14.
    Nyberg, K.: Linear Approximation of Block Ciphers. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 439–444. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  15. 15.
    Parker, M.G., Raddum, H.: Z4-Linear Cryptanalysis. NESSIE Internal Report, 27/06/2002: NES/DOC/UIB/WP5/018/1Google Scholar
  16. 16.
    Schneier, B., Kelsey, J., Whiting, D., Wagner, D., Hall, C., Ferguson, N.: New Results on the Twofish Encryption Algorithm. Second AES Candidate Conference (April 1999)Google Scholar
  17. 17.
    Matsui, M., Yamagishi, A.: A New Method for Known Plaintext Attack of FEAL Cipher. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 81–91. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  18. 18.
    Tardy-Corfdir, A., Gilbert, H.: A Known Plaintext Attack of FEAL-4 and FEAL-6. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 172–182. Springer, Heidelberg (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Louis Granboulan
    • 1
  • Éric Levieil
    • 1
  • Gilles Piret
    • 1
  1. 1.École Normale Supérieure 

Personalised recommendations