Upper Bounds on Algebraic Immunity of Boolean Power Functions

  • Yassir Nawaz
  • Guang Gong
  • Kishan Chand Gupta
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4047)

Abstract

Algebraic attacks have received a lot of attention in studying security of symmetric ciphers. The function used in a symmetric cipher should have high algebraic immunity (\({\cal AI}\)) to resist algebraic attacks. In this paper we are interested in finding \({\cal AI}\) of Boolean power functions. We give an upper bound on the \({\cal AI}\) of any Boolean power function and a formula to find its corresponding low degree multiples. We prove that the upper bound on the \({\cal AI}\) for Boolean power functions with Inverse, Kasami and Niho exponents are \(\lfloor \sqrt{n}\rfloor + \lceil \frac{n}{\lfloor \sqrt{n} \rfloor}\rceil -2\), \(\lfloor \sqrt{n} \rfloor + \lceil \frac{n}{\lfloor \sqrt{n} \rfloor}\rceil\) and \(\lfloor \sqrt{n} \rfloor + \lceil \frac{n}{\lfloor \sqrt{n} \rfloor}\rceil\) respectively. We also generalize this idea to Boolean polynomial functions. All existing algorithms to determine \({\cal AI}\) and corresponding low degree multiples become too complex if the function has more than 25 variables. In our approach no algorithm is required. The \({\cal AI}\) and low degree multiples can be obtained directly from the given formula.

Keywords

Algebraic attacks Algebraic immunity Inverse exponent Kasami exponent Polynomial functions Power functions Niho exponent 

References

  1. 1.
    Armknecht, F.: On the Existence of Low-degree Equations for Algebraic Attacks, Cryptology ePrint Archive, Report 2004/185 (2004), http://eprint.iacr.org/
  2. 2.
    Armknecht, F.: Algebraic attacks on combiners with memory. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 162–175. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Armknecht, F.: Improving fast algebraic attacks. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 65–82. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Braeken, A., Lano, J., Mentens, N., Preneel, B., Verbauwhede, I.: SFINKS: A Synchronous Stream Cipher for Restricted Hardware Environments, eSTREAM Project report 2005/026, Available at, http://www.ecrypt.eu.org/stream/
  5. 5.
    Braeken, A., Preneel, B.: On the Algebraic Immunity of Symmetric Boolean Functions. In: Maitra, S., Veni Madhavan, C.E., Venkatesan, R. (eds.) INDOCRYPT 2005. LNCS, vol. 3797, pp. 35–48. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Cheon, J., Lee, D.: Resistance of S-Boxes Against Algebraic Attacks. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 83–94. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Courtois, N.: Fast Algebraic Attacks on Stream Ciphers with Linear Feedback. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 176–194. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Courtois, N., Meier, W.: Algebraic Attacks on Stream Ciphers with Linear Feedback. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 346–359. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Courtois, N., Meier, W.: Algebraic Attacks on Stream Ciphers with Linear Feedback, Extended version of [8], available at, http://cryptosystem.net/stream
  10. 10.
    Courtois, N.: Algebraic Attacks on Combiners with Memory and Several Outputs. In: Park, C.-s., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 3–20. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Courtois, N., Pieprzyk, J.: Cryptanalysis of Block Ciphers with Overdefined Systems of Equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 267–287. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Courtois, N., Debraize, B., Garrido, E.: On Exact Algebraic [Non]Immunity of S-boxes Based on Power Functions, Cryptology ePrint Archive, Report 2005/203 (2005), http://eprint.iacr.org/
  13. 13.
    Daemen, J., Rijmen, V.: The Design of Rijndael. Springer, Heidelberg (2002)MATHGoogle Scholar
  14. 14.
    Dalai, D.K., Gupta, K.C., Maitra, S.: Cryptographically Significant Boolean Functions: Construction and Analysis in Terms of Algebraic Immunity. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 98–111. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Dalai, D.K., Maitra, S., Sarkar, S.: Basic Theory in Construction of Boolean Functions with Maximum Possible Annihilator Immunity. In: Designs, Codes and Cryptography (to appear)Google Scholar
  16. 16.
    Dobbertin, H.: Almost Perfect Nonlinear Power Functions on GF(2n): The Welch Case. IEEE Transactions on Information Theory 45(4), 1271–1275 (1999)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Dobbertin, H.: Almost Perfect Nonlinear Power Functions on GF(2n): The Niho Case. Information and Computation 151, 57–72 (1998)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Gold, R.: Maximal Recursive Sequences with 3 valued cross-correlation function. IEEE Transactions on Information Theory 14, 154–156 (1968)MATHCrossRefGoogle Scholar
  19. 19.
    Golomb, S.W., Gong, G.: Hyper-Cyclotomic Algebra, Sequences and their Applications. In: SETA 2001, Discrete Mathematics and Theoretical Computer Science, CORR 2001-33, pp. 154–165. Springer, Heidelberg (2001)Google Scholar
  20. 20.
    Golomb, S.W., Gong, G.: Signal Design for Good Correlation: For Wireless Communication, Cryptography, and Radar. Cambridge University Press, Cambridge (2005), ISBN 0521821045Google Scholar
  21. 21.
    Hawkes, P., Rose, G.: Rewriting Variables: The Complexity of Fast Algebraic Attacks on Stream Ciphers. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 390–406. Springer, Heidelberg (2004)Google Scholar
  22. 22.
    Ekdahl, P., Johansson, T.: SNOW-A New Version of the Stream Cipher SNOW. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 47–61. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  23. 23.
    Kasami, T.: The Weight Enumerators for Several Classes of Subcodes of the Second Order Binary Reed-Muller Codes. Infor. Contr. 18, 369–394 (1971)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Lidl, R., Niederreiter, H.: Introduction to Finite Fields and their Applications. Cambridge University Press, Cambridge (1994)MATHGoogle Scholar
  25. 25.
    MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error Correcting Codes. North Holland, Amsterdam (1986)Google Scholar
  26. 26.
    Meier, W., Pasalic, E., Carlet, C.: Algebraic Attacks and Decomposition of Boolean Functions. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 474–491. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  27. 27.
    Murphy, S., Robshaw, M.: Essential Algebraic Structure within AES. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 1–16. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  28. 28.
    Murphy, S., Robshaw, M.: Comments on the Security of the AES and the XSL Technique. Electronic Letters 39, 26–38 (2003)CrossRefGoogle Scholar
  29. 29.
    Nawaz, Y., Gong, G., Gupta, K.: Upper Bounds on Algebraic Immunity of Boolean Power Functions (Preprint)Google Scholar
  30. 30.
    Schaumuller-Bichl, I.: Cryptanalysis of the Data Encryption Standard by the Method of Formal Coding. In: Beth, T. (ed.) EUROCRYPT 1982. LNCS, vol. 149, pp. 235–255. Springer, Heidelberg (1983)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yassir Nawaz
    • 1
  • Guang Gong
    • 1
  • Kishan Chand Gupta
    • 2
  1. 1.Department of Electrical and Computer EngineeringUniversity of WaterlooWaterlooCanada
  2. 2.Centre for Applied Cryptographic ResearchUniversity of WaterlooWaterlooCanada

Personalised recommendations