Advertisement

A New Mode of Encryption Providing a Tweakable Strong Pseudo-random Permutation

  • Debrup Chakraborty
  • Palash Sarkar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4047)

Abstract

We present PEP, which is a new construction of a tweakable strong pseudo-random permutation. PEP uses a hash-encrypt-hash approach which has been recently used in the construction of HCTR. This approach is different from the encrypt-mask-encrypt approach of constructions such as CMC, EME and EME*. The general hash-encrypt-hash approach was earlier used by Naor-Reingold to provide a generic construction technique for an SPRP (but not a tweakable SPRP). PEP can be seen as the development of the Naor-Reingold approach into a fully specified mode of operation with a concrete security reduction for a tweakable strong pseudo-random permutation. HCTR is also based on the Naor-Reingold approach but its security bound is weaker than PEP. Compared to previous known constructions, PEP is the only known construction of tweakable SPRP which uses a single key, is efficiently parallelizable and can handle an arbitrary number of blocks.

Keywords

mode of operation tweakable encryption strong pseudo-random permutation 

References

  1. Bellare, M., Rogaway, P.: Encode-then-encipher encryption: How to exploit nonces or redundancy in plaintexts for efficient cryptography. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 317–330. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. Chakraborty, D., Sarkar, P.: A new mode of encryption providing a tweakable strong pseudorandom permutation (2006), http://eprint.iacr.org
  3. Halevi, S.: EME ∗ . Extending EME to handle arbitrary-length messages with associated data. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS, vol. 3348, pp. 315–327. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. Halevi, S., Rogaway, P.: A tweakable enciphering mode. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 482–499. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. Halevi, S., Rogaway, P.: A parallelizable enciphering mode. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 292–304. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. Jutla, C.S.: Encryption modes with almost free message integrity. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 529–544. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. Maitra, S., Gupta, K.C., Venkateswarlu, A.: Results on multiples of primitive polynomials and their products over GF(2). Theoretical Computer Science 341(1- 3), 311–343 (2005)MATHCrossRefMathSciNetGoogle Scholar
  8. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. Luby, M., Rackoff, C.: How to construct pseudo-random permutations and pseudo-random functions. SIAM Journal of Computing 17, 373–386 (1988)MATHCrossRefMathSciNetGoogle Scholar
  10. McGrew, D.A., Viega, J.: The Security and Performance of the Galois/Counter Mode (GCM) of Operation. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS, vol. 3348, pp. 343–355. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. Naor, M., Reingold, O.: On the construction of pseudo-random permutations: Luby-Rackoff revisited. J. of Cryptology 12, 29–66 (1999)MATHCrossRefMathSciNetGoogle Scholar
  12. Naor, M., Reingold, O.: A pseudo-random encryption mode. Manuscript, available from, http://www.wisdom.weizmann.ac.il/~naor
  13. Rogaway, P.: Nonce-based symmetric encryption. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 348–359. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. Rogaway, P., Bellare, M., Black, J.: OCB: A block-cipher mode of operation for efficient authenticated encryption. In: ACM Conference on Computer and Communication Security, pp. 196–205 (2001)Google Scholar
  15. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 288–303. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. Wegman, M., Carter, L.: New hash functions and their use in authentication and set equality. Journal of Computer and System Sciences 22, 265–279 (1981)MATHCrossRefMathSciNetGoogle Scholar
  17. Wang, P., Feng, D., Wu, W.: HCTR: A variable-input-length enciphering mode. In: Feng, D., Lin, D., Yung, M. (eds.) CISC 2005. LNCS, vol. 3822, pp. 175–188. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Debrup Chakraborty
    • 1
  • Palash Sarkar
    • 1
  1. 1.Applied Statistics UnitIndian Statistical InstituteKolkataIndia

Personalised recommendations