Skip to main content

Mining Dynamic Document Spaces with Massively Parallel Embedded Processors

  • Conference paper
Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4017))

Included in the following conference series:

  • 906 Accesses

Abstract

Currently Océ investigates future document management services. One of these services is accessing dynamic document spaces, i.e. improving the access to document spaces which are frequently updated (like newsgroups). This process is rather computational intensive.

This paper describes the research conducted on software development for massively parallel processors. A prototype has been built which processes streams of information from specified newsgroups and transforms them into personal information maps.

Although this technology does speed up the training part compared to a general purpose processor implementation its real benefits emerges with larger problem dimensions because of the scalable approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Meij, J. (ed.): Introduction to Multidimensional Scaling. In: Dealing with the data flood. Mining data, text and multimedia. STT/Beweton, The Hague, The Netherlands (2002)

    Google Scholar 

  2. Perelomov, I., Azcarraga, A.P., Tan, J., Chua, T.S.: Using structured self-organizing maps in news integration websites (2002), http://citeseer.ist.psu.edu/perelomov02using.html

  3. Skupin, A.: A cartographic approach to visualizing conference abstracts. In: IEEE Computer Graphics and Applications, pp. 50–58 (2002)

    Google Scholar 

  4. Jacobs, J., Bond, W., Pouls, R., Smit, G.: Colour image processing with massively parallel embedded processors. Parallel Computing (to appear, 2005)

    Google Scholar 

  5. Aspex Semiconductor Ltd: Linedancer - overview (2005), http://www.aspex-semi.com/pages/products/products_linedancer_overview.shtml

  6. Duda, R., Hart, P., Stork, D.: Pattern Classification. Wiley-Interscience, Chichester (2000)

    Google Scholar 

  7. Kohonen, T.: Self-Organizing Maps. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  8. Nordstrom, T.: Designing parallel computers for self-organizing maps (1992), http://citeseer.ist.psu.edu/nordstrom92designing.html

  9. Schikuta, E., Weidmann, C.: Data parallel simulation of self-organizing maps on hypercube architectures. In: Proceedings of WSOM 1997, Workshop on Self-Organizing Maps, Espoo, Finland, June 4-6, 1997, pp. 142–147. Helsinki University of Technology, Neural Networks Research Centre, Espoo, Finland (1997), http://citeseer.ist.psu.edu/72587.html

  10. Wu, C.H., Hodges, R.E., Wang, C.J.: Parallelizing the self-organizing feature map on multiprocessor systems. Parallel Computing 17, 821–832 (1991)

    Article  MATH  Google Scholar 

  11. Pohl, C., Franzmeier, M., Porrmann, M., Rückert, U.: Gnbx – reconfigurable hardware acceleration of self-organizing maps. In: Proceedings of the IEEE International Conference on Field Programmable Technology (FPT 2004), Brisbane, Australia, pp. 97–104 (2004)

    Google Scholar 

  12. Garcia, C., Prieto, M., Pascual-Montano, A.: A speculative parallel algorithm for self-organizing maps. Parallel Computing (to appear, 2005)

    Google Scholar 

  13. Krikelis, A., Weems, C.: Associative Processing and Processors. IEEE Computer Society, Los Alamitos (1997)

    Google Scholar 

  14. Anjewierden, A., de Hoog, R., Brussee, R., Efimova, L.: Knowledge flows in weblogs. In: Proceedings of the 13th International Conference on Conceptual Structures (ICCS 2005), Kassel, Germany (2005)

    Google Scholar 

  15. W3Schools: Introduction into svg (2006) [Online, accessed 12/04/2006], http://www.w3schools.com/svg/svg_intro.asp

  16. Azcarraga, A.P., Teddy, N., Yap, J.: Extracting meaningful labels for websom text archives. In: CIKM 2001: Proceedings of the tenth international conference on Information and knowledge management, NY, USA, pp. 41–48. ACM Press, New York (2001)

    Chapter  Google Scholar 

  17. NeoMagic Corporation: The technology of associative processor array (2002), http://www.neomagic.com/product/apa_version3_1.pdf

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jacobs, J.W.M., Dai, R., Smit, G.J.M. (2006). Mining Dynamic Document Spaces with Massively Parallel Embedded Processors. In: Vassiliadis, S., Wong, S., Hämäläinen, T.D. (eds) Embedded Computer Systems: Architectures, Modeling, and Simulation. SAMOS 2006. Lecture Notes in Computer Science, vol 4017. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11796435_9

Download citation

  • DOI: https://doi.org/10.1007/11796435_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36410-8

  • Online ISBN: 978-3-540-36411-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics