Energy Optimization of a Multi-bank Main Memory

  • Hanene Ben Fradj
  • Sébastien Icart
  • Cécile Belleudy
  • Michel Auguin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4017)


A growing part of the energy, battery-driven embedded system, is consumed by the off-chip main memory. In order to minimize this memory consumption, an architectural solution is recently adopted. It consists of multi-banking the addressing space instead of monolithic memory. The main advantage in this approach is the capability of setting banks in low power modes when they are not accessed, such that only the accessed bank is maintained in active mode. In this paper we investigate how this power management capability built into modern DRAM devices can be handled for multi-task applications. We aim to find, at system level design, both an efficient allocation of applications tasks to memory banks, and the memory configuration that lessen the energy consumption: number of banks and the size of each bank. Results show the effectiveness of this approach and the large energy savings.


Main Memory Task Allocation Memory Consumption Memory Bank Memory Architecture 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    SIA: International roadmap for semiconductors (2001)Google Scholar
  2. 2.
    Rambus, Inc.: 128/144 MBit Direct RDRAM data sheet (1999)Google Scholar
  3. 3.
    Infineon, Inc.: Mobile-RAM data sheet (2004)Google Scholar
  4. 4.
    Delaluz, V., Kandemir, M., Vijaykrishnan, N., Sivasubramaniam, A., Irwin, M.: Dram energy management using software and hardware directed power mode control. In: HPCA, 159–170 (2001)Google Scholar
  5. 5.
    Delaluz, V., Kandemir, M., Sezer, U.: Improving off-chip memory energy behavior in a multi-processor, multi-bank environment. In: LCPC, pp. 100–114 (2001)Google Scholar
  6. 6.
    Lebeck, A.R., Fan, X., Zeng, H., Ellis, C.: Power aware page allocation. In: ASPLOS (2000)Google Scholar
  7. 7.
    Kandemir, M., Kolcu, I., Kadayif, I.: Influence of loop optimizations on energy consumption of multi-bank memory systems. In: Proc. Compiler Construction (2002)Google Scholar
  8. 8.
    Delaluz, V., Kandemir, M., Kolcu, I.: Automatic data migration for reducing energy consumption in multi-bank memory systems. In: DAC (2002)Google Scholar
  9. 9.
    Ozturk, O., Kandemir, M.: Nonuniform banking for reducing memory energy consumption. In: DATE (2005)Google Scholar
  10. 10.
    Itoh, K., Sasaki, K., Nakagome, Y.: Trends in low-power RAM circuit technologies. Proc. IEEE 83, 524–543 (1995)CrossRefGoogle Scholar
  11. 11.
    Benini, L., Macci, A., Poncino, M.: A recursive algorithm for low-power memory partitioning. In: ISLPED (2000)Google Scholar
  12. 12.
    Mamidipaka, M., Dutt, N.: ecacti: An enhanced power estimation model for on-chip caches. Technical Report TR-04-28, Center for Embedded Computer Systems (2004)Google Scholar
  13. 13.
    Intel, Inc.: PXA 270 data sheet (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Hanene Ben Fradj
    • 1
  • Sébastien Icart
    • 1
  • Cécile Belleudy
    • 1
  • Michel Auguin
    • 1
  1. 1.Laboratoire d’informatique, Signaux et Systèmes de Sophia-Antipolis, Les AlgorithmesSophia-AntipolisFrance

Personalised recommendations