On the Power of Anonymous One-Way Communication

  • Dana Angluin
  • James Aspnes
  • David Eisenstat
  • Eric Ruppert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3974)


We consider a population of anonymous processes communicating via anonymous message-passing, where the recipient of each message is chosen by an adversary and the sender is not identified to the recipient. Even with unbounded message sizes and process states, such a system can compute only limited predicates on inputs held by the processes. In the finite-state case, we show how the exact strength of the model depends critically on design choices that are irrelevant in the unbounded-state case, such as whether messages are delivered immediately or after a delay, whether a sender can record that it has sent a message, and whether a recipient can queue incoming messages, refusing to accept new messages until it has had a chance to send out messages of its own. These results may have implications for the design of distributed systems where processor power is severely limited, as in sensor networks.


Observation Model Transmission Model Input Symbol Incoming Message Chemical Master Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angluin, D.: Local and global properties in networks of processors. In: Proceedings of the 12th ACM Symposium on Theory of Computing, pp. 82–93 (1980)Google Scholar
  2. 2.
    Angluin, D., Aspnes, J., Chan, M., Fischer, M.J., Jiang, H., Peralta, R.: Stably computable properties of network graphs. In: IEEE/ACM International Conference on Distributed Computing in Sensor Systems (June 2005)Google Scholar
  3. 3.
    Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively mobile finite-state sensors. In: Proc. 23rd Annual ACM Symposium on Principles of Distributed Computing, pp. 290–299 (2004)Google Scholar
  4. 4.
    Aspnes, J., Shah, G., Shah, J.: Wait-free consensus with infinite arrivals. In: Proceedings of the 34th ACM Symposium on Theory of Computing, pp. 524–533 (2002)Google Scholar
  5. 5.
    Attiya, H., Gorbach, A., Moran, S.: Computing in totally anonymous asynchronous shared memory systems. Information and Computation 173(2), 162–183 (2002)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Boldi, P., Vigna, S.: Computing anonymously with arbitrary knowledge. In: Proceedings of the 18th ACM Symposium on Principles of Distributed Computing, pp. 173–179 (1999)Google Scholar
  7. 7.
    Boldi, P., Vigna, S.: An effective characterization of computability in anonymous networks. In: Distributed Computing, 15th International Conference, pp. 33–47 (2001)Google Scholar
  8. 8.
    Buhrman, H., Panconesi, A., Silvestri, R., Vitanyi, P.: On the importance of having an identity or, is consensus really universal? Distributed Computing 18(3), 167–176 (2006)CrossRefMATHGoogle Scholar
  9. 9.
    Daley, D.J., Kendall, D.G.: Stochastic rumours. Journal of the Institute of Mathematics and its Applications 1, 42–55 (1965)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Diamadi, Z., Fischer, M.J.: A simple game for the study of trust in distributed systems. Wuhan University Journal of Natural Sciences 6(1–2), 72–82 (2001) (Also appears as Yale Technical Report TR–1207, January 2001)CrossRefGoogle Scholar
  11. 11.
    Eğecioğlu, Ö., Singh, A.K.: Naming symmetric processes using shared variables. Distributed Computing 8(1), 19–38 (1994)CrossRefGoogle Scholar
  12. 12.
    Fich, F., Ruppert, E.: Hundreds of impossibility results for distributed computing. Distributed Computing 16(2-3), 121–163 (2003)CrossRefGoogle Scholar
  13. 13.
    Gillespie, D.T.: A rigorous derivation of the chemical master equation. Physica A 188, 404–425 (1992)CrossRefGoogle Scholar
  14. 14.
    Ginsburg, S.: The Mathematical Theory of Context Free Languages. McGraw-Hill, New York (1966)MATHGoogle Scholar
  15. 15.
    Guerraoui, R., Ruppert, E.: What can be implemented anonymously? In: 19th International Symposium on Distributed Computing, pp. 244–259 (2005)Google Scholar
  16. 16.
    Higman, G.: Ordering by divisibility in abstract algebras. Proceedings of the London Mathematical Society 3(2), 326–336 (1952)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Jayanti, P., Toueg, S.: Wakeup under read/write atomicity. In: van Leeuwen, J., Santoro, N. (eds.) WDAG 1990. LNCS, vol. 486, pp. 277–288. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  18. 18.
    Kutten, S., Ostrovsky, R., Patt-Shamir, B.: The Las-Vegas processor identity problem (How and when to be unique). Journal of Algorithms 37(2), 468–494 (2000)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Lipton, R.J., Park, A.: The processor identity problem. Information Processing Letters 36(2), 91–94 (1990)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Panconesi, A., Papatriantafilou, M., Tsigas, P., Vitányi, P.: Randomized naming using wait-free shared variables. Distributed Computing 11(3), 113–124 (1998)CrossRefMATHGoogle Scholar
  21. 21.
    Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. In: Comptes-Rendus du I Congrès de Mathématiciens des Pays Slaves, Warszawa, pp. 92–101 (1929)Google Scholar
  22. 22.
    Sakamoto, N.: Comparison of initial conditions for distributed algorithms on anonymous networks. In: Proc. 18th ACM Symposium on Principles of Distributed Computing, pp. 173–179 (1999)Google Scholar
  23. 23.
    Teng, S.-H.: Space efficient processor identity protocol. Information Processing Letters 34(3), 147–154 (1990)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Dana Angluin
    • 1
  • James Aspnes
    • 1
  • David Eisenstat
    • 2
  • Eric Ruppert
    • 3
  1. 1.Department of Computer ScienceYale UniversityUSA
  2. 2.Department of Computer ScienceUniversity of RochesterUSA
  3. 3.Department of Computer Science and EngineeringYork UniversityUSA

Personalised recommendations