A Roadmap from Rough Set Theory to Granular Computing

  • Tsau Young Lin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4062)


Granular Computing (GrC) operates with granules (generalized subsets) of data as pieces of basic knowledge. Rough Set Theory (RST) is a leading special case of GrC approach. In this paper, we outline a roadmap that stepwise refines RST into GrC. A prime illustration is that GrC of symmetric binary relations is a complete topological RST on granular spaces, where the adjective complete means that the representation theory can fully reflect the structure theory.


Binary Relation Approximation Space Neighborhood System Granular Computing Symmetric Binary Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chiang, I.-J., Lin, T.Y., Liu, Y.: Table Representations of Granulations Revisited. In: Ślęzak, D., Wang, G., Szczuka, M., Düntsch, I., Yao, Y. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3641, pp. 728–737. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Halmos, P.: Measure Theory, Van Nostrand (1950)Google Scholar
  3. 3.
    Lee, T.T.: Algebraic Theory of Relational Databases. The Bell System Technical Journal 62(10), 3159–3204 (1983)MATHMathSciNetGoogle Scholar
  4. 4.
    Lin, T.Y.: Neighborhood Systems and Relational Database. In: Proc. of 1988 ACM Sixteen Annual Computer Science Conference (abstract), February 1988, p. 725 (1988)Google Scholar
  5. 5.
    Lin, T.Y.: Chinese Wall Security Policy – An Aggressive Model. In: Proc. of the Fifth Aerospace Computer Security Application Conference, Tuscon, Arizona, USA, pp. 282–289 (1989)Google Scholar
  6. 6.
    Lin, T.Y.: Neighborhood Systems and Approximation in Database and Knowledge Base Systems. In: Proceedings of the Fourth International Symposium on Methodologies of Intelligent Systems, Poster Session, October 12-15, 1989, pp. 75–86 (1989)Google Scholar
  7. 7.
    Lin, T.Y.: Topological and Fuzzy Rough Sets. In: Slowinski, R. (ed.) Decision Support by Experience – Application of the Rough Sets Theory, pp. 287–304. Kluwer Academic Publishers, Dordrecht (1992)Google Scholar
  8. 8.
    Lin, T.Y.: Granular Computing on Binary Relations I: Data Mining and Neighborhood Systems. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery, pp. 107–120. Physica-Verlag, Heidelberg (1998)Google Scholar
  9. 9.
    Lin, T.Y.: Granular Computing on Binary Relations II: Rough Set Representations and Belief Functions. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery, pp. 121–140. Physica-Verlag, Heidelberg (1998)Google Scholar
  10. 10.
    Lin, T.Y.: Data Mining and Machine Oriented Modeling: A Granular Computing Approach. Journal of Applied Intelligence 13(2), 113–124 (2000)CrossRefGoogle Scholar
  11. 11.
    Lin, T.Y.: Chinese Wall Security Policy Models: Information Flows and Confining Trojan Horses. In: Uimercati, S., Ray, I., Ray, I. (eds.) Data and Applications Security XUII: Status and Prospects, pp. 275–297. Kluwer Academic Publishers, Dordrecht (2003)Google Scholar
  12. 12.
    Lin, T.Y.: Granular Computing from Rough Set Prospect. IEEE Computational Intelligence Society Newsletter (November 2004)Google Scholar
  13. 13.
    Lin, T.Y.: Granular Computing: Examples, Intuition, and Modeling. In: The Proceedings of the 2005 IEEE International Conference on Granular Computing Beijing, China, July 25-27, 2005, pp. 40–44 (2005)Google Scholar
  14. 14.
    Lin, T.Y.: Topological Rough Sets and Granular Computing on Symmetric Binary Relations. J. of General Systems (to appear, 2006)Google Scholar
  15. 15.
    Lin, T.Y.: Granular Computing II: Infrastructures for AI-Engineering. In: Proc. of IEEE GrC 2006, May 10-12, 2006, Atlanta, Georgia, USA (2006)Google Scholar
  16. 16.
    Munkres, J.: Topology, 2nd edn. Prentice-Hall, Englewood Cliffs (2000)MATHGoogle Scholar
  17. 17.
    Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)MATHGoogle Scholar
  18. 18.
    Polkowski, L.: Rough Sets: Mathematical Foundations. Physica-Verlag, Heidelberg (2002)MATHGoogle Scholar
  19. 19.
    Sierpiński, W., Krieger, C.: General Topology. University of Toronto Press (1952)Google Scholar
  20. 20.
    Zadeh, L.A.: Toward a generalized theory of uncertainty (GTU) – an outline. Inf. Sci. 172(1-2), 1–40 (2005)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Ziarko, W.: Variable Precision Rough Set Model. J. Comput. Syst. Sci. 46(1), 39–59 (1993)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Tsau Young Lin
    • 1
  1. 1.Department of Computer ScienceSan Jose State UniversitySan JoseUSA

Personalised recommendations