Visually Supporting Depth Perception in Angiography Imaging

  • Timo Ropinski
  • Frank Steinicke
  • Klaus Hinrichs
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4073)


In this paper we propose interactive visualization techniques which support the spatial comprehension of angiogram images by emphasizing depth information and introducing combined depth cues. In particular, we propose a depth based color encoding, two variations of edge enhancement and the application of a modified depth of field effect in order to enhance depth perception of complex blood vessel systems. All proposed techniques have been developed to improve the human depth perception and have been adapted with special consideration of the spatial comprehension of blood vessel structures. To evaluate the presented techniques, we have conducted a user study, in which users had to accomplish certain depth perception tasks.


User Study Depth Information Visualization Technique Depth Perception Vessel Structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gerig, G., Koller, T., Szekely, G., Brechbühler, C., Kübler, O.: Symbolic description of 3-d structures applied to cerebral vessel tree obtained from mr angiography volume data. In: Barrett, H.H., Gmitro, A.F. (eds.) IPMI 1993. LNCS, vol. 687, pp. 94–111. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  2. 2.
    Hahn, H.K., Preim, B., Selle, D., Peitgen, H.O.: Visualization and interaction techniques for the exploration of vascular structures. In: VIS 2001: Proceedings of the conference on Visualization 2001, pp. 395–402. IEEE Computer Society Press, Los Alamitos (2001)CrossRefGoogle Scholar
  3. 3.
    Kanitsar, A., Fleischmann, D., Wegenkittl, R., Felkel, P., Gröller, M.E.: Cpr: Curved planar reformation. In: VIS 2002: Proceedings of the conference on Visualization 2002, pp. 37–44. IEEE Computer Society Press, Los Alamitos (2002)Google Scholar
  4. 4.
    Oeltze, S., Preim, B.: Visualization of Vascular Structures: Method, Validation and Evaluation. IEEE Transactions on Medical Imaging 24, 540–548 (2005)CrossRefGoogle Scholar
  5. 5.
    Straka, M., Cervenansky, M., Cruz, A.L., Kochl, A., Sramek, M., Gröller, E., Fleischmann, D.: The vesselglyph: Focus & context visualization in ct-angiography. In: VIS 2004: Proceedings of the conference on Visualization 2004, pp. 385–392. IEEE Computer Society Press, Los Alamitos (2004)CrossRefGoogle Scholar
  6. 6.
    Lipton, L.: Stereographics developers handbook. Technical report, StereoGraphics Corporation (1997)Google Scholar
  7. 7.
    Pfautz, J.: Depth Perception in Computer Graphics. PhD thesis, University of Cambridge (2000)Google Scholar
  8. 8.
    Wanger, L.C., Ferwerda, J.A., Greenberg, D.P.: Perceiving spatial relationships in computer-generated images. IEEE Computer Graphics and Applications 12, 44–51, 54–58 (1992)Google Scholar
  9. 9.
    Bruno, N., Cutting, J.: Minimodality and the perception of layout. Journal of Experimental Psychology 117, 161–170 (1988)Google Scholar
  10. 10.
    Dosher, B.A., Sperling, G., Wurst, S.A.: Tradeoffs between stereopsis and proximity luminance covariance as determinants of perceived 3d structure. Journal of Vision Research 26, 973–990 (1986)CrossRefGoogle Scholar
  11. 11.
    Young, M.J., Landy, M.S., Maloney, L.T.: A perturbation analysis of depth perception from combinations of texture and motion cues. Journal of Vision Research 33, 2685–2696 (1993)CrossRefGoogle Scholar
  12. 12.
    Steenblik, R.: The chromostereoscopic process: A novel single image stereoscopic process. In: Proceedings of SPIE - True 3D Imaging Techniques and Display Technologies (1987)Google Scholar
  13. 13.
    Bailey, M., Clark, D.: Using chromadepth to obtain inexpensive single-image stereovision for scientific visualization. Journal of Graphics Tools 3, 1–9 (1998)Google Scholar
  14. 14.
    Ware, C.: Information Visualization. Morgan Kaufmann, San Francisco (2004)Google Scholar
  15. 15.
    Saito, T., Takahashi, T.: Comprehensible rendering of 3-d shapes. In: SIGGRAPH 1990: Proceedings of the 17th annual conference on Computer graphics and interactive techniques, pp. 197–206. ACM Press, New York (1990)CrossRefGoogle Scholar
  16. 16.
    Knill, D.C.: Reaching for visual cues to depth: The brain combines depth cues differently for motor control and perception. Journal of Vision 5, 103–115 (2005)CrossRefGoogle Scholar
  17. 17.
    Domini, F., Caudek, C., Skirko, P.: Temporal integration of motion and stereo cues to depth. Perception & Psychophysics, 48–57 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Timo Ropinski
    • 1
  • Frank Steinicke
    • 1
  • Klaus Hinrichs
    • 1
  1. 1.Department of Computer ScienceUniversity of MünsterGermany

Personalised recommendations