Feature-Preserving, Accuracy-Controllable Freeform Surfaces for Web-Based Surgical Simulations

  • Akira Wakita
  • Masahiro Kobayashi
  • Hiroaki Chiyokura
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4073)


In this paper we present a method to generate compact and accuracy-controllable free-form surfaces for web-based surgical simulations. Users can input an important area where high accuracy is required, such as an affected area. The input area can be reflected as meshes with high level of details. By utilizing display tablet interfaces, surgeons are able to draw incision lines or boundaries between organs on an on-screen 3D model, just like they draw lines on paper in surgical planning procedures. Input lines can be reflected as boundaries between patches on free-form surfaces. Practical surgical simulators are also presented to evaluate the efficiency of our framework.


Feature Line Freeform Surface Triangle Mesh Incision Line Subdivision Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Behr, J., Alexa, M.: Volume Rendering in VRML. In: ACM Web3D 2001, pp. 23–27 (2000)Google Scholar
  2. 2.
    Chiyokura, H., Kimura, F.: Design of Solids with Free-form Surfaces. Computer Graphics (SIGGRAPH 1983 Proceedings), 289–298 (1983)Google Scholar
  3. 3.
    Chiyokura, H.: An Extended Rounding Operation for Modeling Solids with Free-Form Surfaces. IEEE Computer Graphics and Applications 7(12), 27–36 (1987)CrossRefGoogle Scholar
  4. 4.
    Cignoni, P., Rocchini, C., Scopigno, R.: Metro: Measuring Error on Simplified Surfaces. Computer Graphics Forum 17(2), 167–174 (1998)CrossRefGoogle Scholar
  5. 5.
    Cohen, M.M., MacLean, R.E.: Craniosynostosis: Diagnosis, Evaluation, and Management. Oxford University Press, Oxford (2000)Google Scholar
  6. 6.
    Doo, D., Sabin, M.: Behaviour of recursive subdivision surfaces near extraordinary points. Computer Aided Design 10(6), 356–360 (1978)CrossRefGoogle Scholar
  7. 7.
    Garland, M., Heckbart, P.S.: Surface Simplification Using Quadric Error Metrics. In: SIGGRAPH 1997 Proceedings, pp. 209–216 (1997)Google Scholar
  8. 8.
    Igarashi, T., Matsuoka, S., Tanaka, H.: Teddy: A sketching interface for 3D freeform design. Computer Graphics (SIGGRAPH 1999 Proceedings), 409–416 (1999)Google Scholar
  9. 9.
    John, N.W., Phillips, N.: Surgical Simulators Using the WWW. In: Medicine Meets Virtual Reality 2000, pp. 146–152 (2000)Google Scholar
  10. 10.
    Kalnins, R.D., Markosian, L., Meier, B.J., Kowalski, M.A., Lee, J.C., Davidson, P.L., Webb, M., Hughes, J.F., Finkelstein, A.: WYSIWYG NPR: Drawing strokes directly on 3D models. Computer Graphics (SIGGRAPH 2002 Proceedings), 755–762 (2002)Google Scholar
  11. 11.
    Kanai, T., Suzuki, H.: Approximate Shortest Path on a Polyhedral Surface and Its Applications. Computer Aided Design 33(11), 801–811 (2001)CrossRefMATHGoogle Scholar
  12. 12.
    Koch, R.M., Gross, M.H., Carls, F.R., von Büren, D.F., Fankhauser, G., Parish, Y.I.H.: Simulating Facial Surgery Using Finite Element Models. In: SIGGRAPH 1996 Proceedings, pp. 421–428 (1996)Google Scholar
  13. 13.
  14. 14.
    Nealen, A., Sorkine, O., Alexa, M., Cohen-Or, D.: A sketch-based interface for detail-preserving mesh editing. ACM Trans. Graph 24(3), 1142–1147 (2005)CrossRefGoogle Scholar
  15. 15.
    Pflesser, B., Petersik, A., Pommert, A., Riemer, M., Tiede, R.S.U., Hohne, K.H.: Exploring the Visible Human’s Inner Organs with the VOXEL-MAN 3D Navigator. In: MMVR 2001, pp. 379–385 (2001)Google Scholar
  16. 16.
    Takeuchi, S., Kanai, T., Suzuki, H., Shimada, K., Kimura, F.: Subdivision Surface Fitting with QEM-based Mesh Simplification and Reconstruction of Approximated B-spline Surfaces. In: Pacific Graphics 2000, pp. 202–212 (2000)Google Scholar
  17. 17.
    The Visible Human Project, National Library of Medicine (1995), http://www.nlm.nih.gov/research/visible/visible_human.html
  18. 18.
    Virtual Human Project, Oak Ridge National Laboratory (1999), http://www.ornl.gov/virtualhuman/
  19. 19.
    Wakita, A., Yajima, M., Harada, T., Toriya, H., Chiyokura, H.: XVL: A Compact and Qualified 3D Representation based on Lattice Mesh and Surface for the Internet. In: ACM Web3D-VRML 2000, pp. 45–51 (2000)Google Scholar
  20. 20.
    Wakita, A., Hayashi, T., Kanai, T., Chiyokura, H.: Using Lattice for Web-based Medical Applications. In: ACM Web3D 2001, pp. 29–34 (2001)Google Scholar
  21. 21.
    Zachow, S., Gladilin, E., Sader, R., Zeilhofer, H.-F.: Draw & Cut: Intuitive 3D Osteotomy Planning on Polygonal Bone Models. Computer Assisted Radiology and Surgery (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Akira Wakita
    • 1
  • Masahiro Kobayashi
    • 2
  • Hiroaki Chiyokura
    • 1
  1. 1.Faculty of Environmental InformationKeio UniversityFujisawa KanagawaJapan
  2. 2.Faculty of Nursing and Medical CareKeio UniversityTokyoJapan

Personalised recommendations