The Totally Real Primitive Number Fields of Discriminant at Most 109

  • Gunter Malle
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4076)


In this note we report on the enumeration of totally real number fields of discriminant at most 109 with no proper subfield and give some statistics on their properties.


Symmetric Group Galois Group Class Number Frobenius Group Primitive Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Belabas, K.: A fast algorithm to compute cubic fields. Math. Comp. 66, 1213–1237 (1997)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Belabas, K.: Paramétrisation de structures algébriques et densité de discriminants [d’après M. Bhargava]. Astérisque 299, 267–299 (2005)MathSciNetGoogle Scholar
  3. 3.
    Bhargava, M.: The density of discriminants of quartic rings and fields. Ann. of Math. 162, 1031–1063 (2005)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Cohen, H.: A course in computational algebraic number theory. Springer, Berlin (1993)MATHGoogle Scholar
  5. 5.
    Cohen, H.: Counting A 4 and S 4 number fields with given resolvent cubic. In: Fields Inst. Commun., vol. 41, pp. 159–168. Amer. Math. Soc., Providence, RI (2004)Google Scholar
  6. 6.
    Cohen, H., Diaz y Diaz, F., Olivier, M.: A survey of discriminant counting. In: Fieker, C., Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 80–94. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Cohen, H., Diaz y Diaz, F., Olivier, M.: Counting discriminants of number fields. J. Th. Nombres Bordeaux (to appear)Google Scholar
  8. 8.
    Cohen, H., Martinet, J.: Class groups of number fields: numerical heuristics. Math. Comp. 48, 123–137 (1987)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Daberkow, M., Fieker, C., Klüners, J., Pohst, M., Roegner, K., Wildanger, K.: KANT V4. J. Symbolic Comp. 24, 267–283 (1997)MATHCrossRefGoogle Scholar
  10. 10.
    Ford, D., Pohst, M.: The totally real A 5 extension of degree 6 with minimum discriminant. Experiment. Math. 1, 231–235 (1992)MATHMathSciNetGoogle Scholar
  11. 11.
    Klüners, J.: The number of S 4-fields with given discriminant. Acta Arithmetica (to appear)Google Scholar
  12. 12.
    Klüners, J., Malle, G.: A database for field extensions of the rationals. LMS J. Comput. Math. 4, 182–196 (2001)MATHMathSciNetGoogle Scholar
  13. 13.
    Malle, G.: On the distribution of Galois groups. J. Number Theory 92, 315–329 (2002)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Malle, G.: On the distribution of Galois groups. II. Experiment. Math. 13, 129–135 (2004)MATHMathSciNetGoogle Scholar
  15. 15.
    Takeuchi, K.: Totally real algebraic number fields of degree 9 with small discriminant. Saitama Math. J. 17, 63–85 (1999)MATHMathSciNetGoogle Scholar
  16. 16.
    Washington, L.C.: Introduction to cyclotomic fields, 2nd edn. Graduate Texts in Mathematics, vol. 83. Springer, New York (1997)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Gunter Malle
    • 1
  1. 1.Fachbereich MathematikUniversität KaiserslauternKaiserslauternGermany

Personalised recommendations