Skip to main content

Hard Instances of the Constrained Discrete Logarithm Problem

  • Conference paper
Algorithmic Number Theory (ANTS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 4076))

Included in the following conference series:

Abstract

The discrete logarithm problem (DLP) generalizes to the constrained DLP, where the secret exponent x belongs to a set known to the attacker. The complexity of generic algorithms for solving the constrained DLP depends on the choice of the set. Motivated by cryptographic applications, we study explicit construction of sets for which the constrained DLP is hard. We draw on earlier results due to Erdös et al. and Schnorr, develop geometric tools such as generalized Menelaus’ theorem for proving lower bounds on the complexity of the constrained DLP, and construct explicit sets with provable non-trivial lower bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bose, R.C., Chowla, S.: Theorems in the additive theory of numbers. Comment. Math. Helv. 37, 141–147 (1962–1963)

    Article  MathSciNet  Google Scholar 

  2. Baker, R.C., Harman, G., Pintz, J.: The difference between consecutive primes. II. Proc. London Math. Soc. 83(3), 532–562 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bollobás, B.: Modern graph theory. Graduate texts in mathematics, vol. 184. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  4. Coron, J.-S., Lefranc, D., Poupard, G.: A new baby-step giant-step algorithm and some applications to cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 47–60. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Chateauneuf, M., Ling, A., Stinson, D.R.: Slope packings and coverings, and generic algorithms for the discrete logarithm problem. J. Comb. Designs 11(1), 36–50 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Carter, L., Wegman, M.N.: Universal classes of hash functions. In: STOC 1977, pp. 106–112 (1977)

    Google Scholar 

  7. Erdös, P., Newman, D.J.: Bases for sets of integers. J. Number Theory 9(4), 420–425 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  8. Graham, R.L., Sloane, N.J.A.: On additive bases and harmonious graphs. SIAM J. Algebraic and Discrete Methods 1, 382–404 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  9. Guy, R.K.: Unsolved Problems in Number Theory, 3rd edn. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  10. Heiman, R.: A note on discrete logorithms with special structure. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 454–457. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  11. Haanpää, H., Huima, A., Östergård, P.R.J.: Sets in ℤ n with distinct sums of pairs. Discrete Applied Mathematics 138(1–2), 99–106 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hoffstein, J., Silverman, J.H.: Random small Hamming weight products with applications to cryptography. Discrete Applied Mathematics 130(1), 37–49 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Knuth, D.E.: Seminumerical Algorithms, 3rd edn. The Art of Computer Programming, vol. 2. Addison-Wesley, Reading (1997)

    Google Scholar 

  14. Nechaev, V.I.: Complexity of a determinate algorithm for the discrete logarithm. Math. Notes 55(2), 165–172 (1994)

    Article  MathSciNet  Google Scholar 

  15. Naor, A., Verstraëte, J.: A note on bipartite graphs without 2k-cycles. Probability, Combinatorics and Computing 14(5–6), 845–849 (2005)

    Article  MATH  Google Scholar 

  16. O’Bryant, K.: Sidon Sets and Beatty Sequences. PhD thesis, U. of Illinois in Urbana-Champaign (2002)

    Google Scholar 

  17. O’Bryant, K.: A complete annotated bibliography of work related to Sidon sequences. Electr. J. Combinatorics, DS11 (July 2004)

    Google Scholar 

  18. Odlyzko, A.M.: Discrete logarithms: The past and the future. Des. Codes Cryptography 19(2/3), 129–145 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Pollard, J.M.: Monte Carlo methods for index computation (mod p). Mathematics of Computation 32, 918–924 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  20. Pollard, J.M.: Kangaroos, monopoly and discrete logarithms. J. Cryptology 13(4), 437–447 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  21. Ruzsa, I.Z.: Solving a linear equation in a set of integers. Part I. Acta Arith. 65, 259–282 (1993)

    MATH  MathSciNet  Google Scholar 

  22. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identities. J. ACM 27(4), 701–717 (1980)

    Article  MATH  Google Scholar 

  23. Schnorr, C.-P.: Small generic hardcore subsets for the discrete logarithm. Inf. Process. Lett. 79(2), 93–98 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  24. Shanks, D.: Class number, a theory of factorization, and genera. In: Lewis, D.J. (ed.) 1969 Number Theory Institute, Providence, Rhode Island. Proceedings of Symposia in Pure Mathematics, vol. 20, pp. 415–440. American Mathematical Society (1971)

    Google Scholar 

  25. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997)

    Google Scholar 

  26. Singer, J.: A theorem in finite projective geometry and some applications to number theory. Trans. Amer. Math. Soc. 43, 377–385 (1938)

    Article  MATH  MathSciNet  Google Scholar 

  27. Sella, Y., Jakobsson, M.: Constrained and constant ratio hash functions (manuscript, 2004)

    Google Scholar 

  28. Stinson, D.R.: Some baby-step giant-step algorithms for the low Hamming weight discrete logarithm problem. Math. Comput. 71(237), 379–391 (2002)

    MATH  MathSciNet  Google Scholar 

  29. Schirokauer, O., Weber, D., Denny, T.F.: Discrete logarithms: The effectiveness of the index calculus method. In: Cohen, H. (ed.) ANTS 1996. LNCS, vol. 1122, pp. 337–361. Springer, Heidelberg (1996)

    Google Scholar 

  30. Teske, E.: Square-root algorithms for the discrete logarithm problem (a survey). In: Public-Key Cryptography and Computational Number Theory, pp. 283–301 (2001)

    Google Scholar 

  31. van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic applications. J. Cryptology 12(1), 1–28 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  32. Yacobi, Y.: Fast exponentiation using data compression. SIAM J. Comput. 28(2), 700–703 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  33. Zarankiewicz, K.: Problem P 101. Colloq. Math. 2, 301 (1951)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mironov, I., Mityagin, A., Nissim, K. (2006). Hard Instances of the Constrained Discrete Logarithm Problem. In: Hess, F., Pauli, S., Pohst, M. (eds) Algorithmic Number Theory. ANTS 2006. Lecture Notes in Computer Science, vol 4076. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11792086_41

Download citation

  • DOI: https://doi.org/10.1007/11792086_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36075-9

  • Online ISBN: 978-3-540-36076-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics