Signature Calculus and Discrete Logarithm Problems

  • Ming-Deh Huang
  • Wayne Raskind
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4076)


Index calculus has been successful in many cases for treating the discrete logarithm problem for the multiplicative group of a finite field, but less so for elliptic curves over a finite field. In this paper we seek to explain why this might be the case from the perspective of arithmetic duality and propose a unified method for treating both problems which we call signature calculus.


Elliptic Curve Elliptic Curf Multiplicative Group Discrete Logarithm Discrete Logarithm Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [F]
    Frey, G.: Applications of arithmetical geometry to cryptographic constructions. In: Proceedings of the Fifth International Conference on Finite Fields and Applications, pp. 128–161. Springer, Heidelberg (1999); Preprint also available at:
  2. [FR]
    Frey, G., Rück, H.-G.: A remark concerning m-divisibility and the discrete logarithm in the divisor class group of curves. Mathematics of Computation 62(206), 865–874 (1994)MATHCrossRefMathSciNetGoogle Scholar
  3. [HKT]
    Huang, M.-D., Kueh, K.L., Tan, K.-S.: Lifting elliptic curves and solving the elliptic curve discrete logarithm problem. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. [HR1]
    Huang, M.-D., Raskind, W.: Global duality and the discrete logarithm problem (preprint, 2006),
  5. [HR2]
    Huang, M.-D., Raskind, W.: Signature calculus and the the discrete logarithm problem for the multiplicative group case (preprint, 2006),
  6. [HR3]
    Huang, M.-D., Raskind, W.: Signature calculus and the discrete logarithm problem for elliptic curves (preprint, 2006)Google Scholar
  7. [JKSST]
    Jacobson, M.J., Koblitz, N., Silverman, J.H., Stein, A., Teske, E.: Analysis of the Xedni calculus attack. Design, Codes and Cryptography 20, 41–64 (2000)MATHCrossRefMathSciNetGoogle Scholar
  8. [K]
    Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48, 203–209 (1987)MATHCrossRefMathSciNetGoogle Scholar
  9. [KMV]
    Koblitz, N., Menezes, A., Vanstone, S.: The state of elliptic curve cryptography. Design, Codes and Cryptography 19, 173–193 (2000)MATHCrossRefMathSciNetGoogle Scholar
  10. [Ma]
    Mazur, B.: Notes on the étale cohomology of number fields. Ann. Sci. École Normale Supérieure 6, 521–556 (1973)MATHMathSciNetGoogle Scholar
  11. [Mc]
    McCurley, K.: The discrete logarithm problem. In: Pomerance, C. (ed.) Cryptology and Computational Number Theory. Proceedings of Symposia in Applied Mathematics, vol. 42, pp. 49–74 (1990)Google Scholar
  12. [Mill]
    Miller, V.: Uses of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)Google Scholar
  13. [MET]
    Milne, J.S.: Étale Cohomology. Princeton Mathematical Series, vol. 33. Princeton University Press, Princeton (1980)MATHGoogle Scholar
  14. [MAD]
    Milne, J.S.: Arithmetic Duality Theorems. Perspectives in Mathematics, vol. 1. Academic Press, London (1986)MATHGoogle Scholar
  15. [N]
    Nguyen, K.: Thesis, Universität Essen (2001)Google Scholar
  16. [S]
    Serre, J.-P.: Local Fields. Graduate Texts in Mathematics, vol. 67. Springer, Heidelberg (1979)MATHGoogle Scholar
  17. [Sc]
    Schoof, R.: Counting points on elliptic curves over finite fields. Journal de Théorie des Nombres de Bordeaux 7, 219–254 (1995)MATHMathSciNetGoogle Scholar
  18. [SWD]
    Schirokauer, O., Weber, D., Denny, T.: Discrete logarithms: The effectiveness of the index calculus method. In: Cohen, H. (ed.) ANTS 1996. LNCS, vol. 1122. Springer, Heidelberg (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ming-Deh Huang
    • 1
  • Wayne Raskind
    • 2
  1. 1.Department of Computer ScienceUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Department of MathematicsUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations