Determined Sequences, Continued Fractions, and Hyperelliptic Curves

  • Alfred J. van der Poorten
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4076)


In this report I sanitise (in the sense of ‘bring some sanity to’) the arguments of earlier reports detailing the correspondence between sequences (M+hS) − − ∞ < h < ∞  of divisors on elliptic and genus two hyperelliptic curves, the continued fraction expansion of quadratic irrational functions in the relevant elliptic and hyperelliptic function fields, and certain integer sequences satisfying relations of Somos type. I note that one may often readily determine the coefficients in those relations by elementary linear algebra.


Elliptic Curve Elliptic Curf Laurent Series Cluster Algebra Hyperelliptic Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, W.W., Razar, M.J.: Multiples of points on elliptic curves and continued fractions. Proc. London Math. Soc. 41, 481–498 (1980)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Berry, T.G.: A type of hyperelliptic continued fraction. Monatshefte Math. 145(4), 269–283 (2005)MATHCrossRefGoogle Scholar
  3. 3.
    Braden, H.W., Enolskii, V.Z., Hone, A.N.W.: Bilinear recurrences and addition formulæ for hyperelliptic sigma functions. J. Nonlin. Math. Phys. 12(suppl. 2), 46–62 (2005), Also at:
  4. 4.
    Cantor, D.G.: Computing in the Jacobian of a hyperelliptic curve. Math. Comp. 48(177), 95–101 (1987)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Cantor, D.G.: On the analogue of the division polynomials for hyperelliptic curves. J. für Math (Crelle) 447, 91–145 (1994)MATHMathSciNetGoogle Scholar
  6. 6.
    Everest, G., van der Poorten, A., Shparlinski, I., Ward, T.: Recurrence Sequences. In: Mathematical Surveys and Monographs. American Mathematical Society, vol. 104, pp. xiv+318 (2003)Google Scholar
  7. 7.
    Fomin, S., Zelevinsky, A.: The Laurent phenomenon. Adv. in Appl. Math. 28, 119–144 (2002), 21p. Also at:
  8. 8.
    Gale, D.: The strange and surprising saga of the Somos sequences. The Mathematical Intelligencer 13(1), 40–42 (1991); Somos sequence update. Ibid. 13(4), 49–50 CrossRefMathSciNetGoogle Scholar
  9. 9.
    Hone, A.N.W.: Elliptic curves and quadratic recurrence sequences. Bull. London Math. Soc. 37, 161–171 (2005)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Lauter, K.E.: The equivalence of the geometric and algebraic group laws for Jacobians of genus 2 curves. In: Topics in algebraic and noncommutative geometry (Luminy/Annapolis, MD, 2001). Contemp. Math., vol. 324, pp. 165–171. Amer. Math. Soc, Providence, RI (2001)Google Scholar
  11. 11.
    van der Poorten, A.J.: Periodic continued fractions and elliptic curves. In: van der Poorten, A., Stein, A. (eds.) High Primes and Misdemeanours: lectures in honour of the 60th birthday of Hugh Cowie Williams. Fields Institute Communications, vol. 42, pp. 353–365. American Mathematical Society (2004)Google Scholar
  12. 12.
    van der Poorten, A.J.: Elliptic sequences and continued fractions. Journal of Integer Sequences 8(05.2.5), 1–19 (2005)Google Scholar
  13. 13.
    van der Poorten, A.J.: Curves of genus 2, continued fractions, and Somos sequences. Journal of Integer Sequences 8(05.3.4), 1–9 (2005)Google Scholar
  14. 14.
    van der Poorten, A.J., Swart, C.S.: Recurrence relations for elliptic sequences: every Somos 4 is a Somos k. Bull. London Math. Soc. (to appear), At:
  15. 15.
    Propp, J.: The Somos Sequence Site,
  16. 16.
    Shipsey, R.: Elliptic divisibility sequences, Phd Thesis, Goldsmiths College, University of London (2000), At:
  17. 17.
    Sloane, N.: On-Line Encyclopedia of Integer Sequences,
  18. 18.
    Swart, C.: Elliptic curves and related sequences. PhD Thesis, Royal Holloway, University of London (2003),
  19. 19.
    Swart, C., Hone, A.: Integrality and the Laurent phenomenon for Somos 4 sequences, 18p. At:
  20. 20.
    Ward, M.: Memoir on elliptic divisibility sequences. Amer. J. Math. 70, 31–74 (1948)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Alfred J. van der Poorten
    • 1
  1. 1.Centre for Number Theory ResearchKillaraAustralia

Personalised recommendations