Symmetric Powers of Elliptic Curve L-Functions

  • Phil Martin
  • Mark Watkins
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4076)


The conjectures of Deligne, Beĭlinson, and Bloch-Kato assert that there should be relations between the arithmetic of algebro-geometric objects and the special values of their L-functions. We make a numerical study for symmetric power L-functions of elliptic curves, obtaining data about the validity of their functional equations, frequency of vanishing of central values, and divisibility of Bloch-Kato quotients.


Functional Equation Elliptic Curve Elliptic Curf Triple Product Symmetric Power 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beĭlinson, A.A.: Higher regulators and values of L-functions. J. Soviet Math. 30, 2036–2070 (1985); English translation from Russian originalGoogle Scholar
  2. 2.
    Birch, B.J., Swinnerton-Dyer, H.P.F.: Notes on elliptic curves. I. II. J. reine angew. Math. 212, 7–25 (1963); 218, 79–108 (1965) Google Scholar
  3. 3.
    Bloch, S., Grayson, D.: K 2 and L-functions of elliptic curves: computer calculations. In: Bloch, S.J., Dennis, R.K., Friedlander, E.M., Stein, M.R. (eds.) Applications of algebraic K-theory to algebraic geometry and number theory. Part I. Proceedings of the AMS-IMS-SIAM joint summer research conference held at the University of Colorado, Boulder, Colo, June 12–18, 1983. Contemporary Mathematics, vol. 55, pp. 79–88. American Mathematical Society, Providence, RI (1986)Google Scholar
  4. 4.
    Bloch, S., Kato, K.: L-functions and Tamagawa numbers of motives. In: Cartier, P., Illusie, L., Katz, N.M., Laumon, G., Manin, Y., Ribet, K.A. (eds.) The Grothendieck Festschrift. Vol. I. A collection of articles written in honor of the 60th birthday of Alexander Grothendieck. Progress in Mathematics, vol. 86, pp. 333–400. Birkhäuser, Boston (1990)Google Scholar
  5. 5.
    Booker, A.R.: Numerical tests for modularity. Ph. D. dissertation, Princeton (2003); Shortened version appeared. J. Ramunajan Math. Soc. 20, 283–339 (2005)Google Scholar
  6. 6.
    Buhler, J., Schoen, C., Top, J.: Cycles, L-functions and triple products of elliptic curves. J. Reine Angew. Math. 492, 93–133 (1997)MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Coates, J., Schmidt, C.-G.: Iwasawa theory for the symmetric square of an elliptic curve. J. Reine Angew. Math. 375/376, 104–156 (1987)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Cohen, H.: Advanced topics in computational number theory. Graduate Texts in Mathematics, vol. 193, p. 578. Springer, New York (2000)MATHGoogle Scholar
  9. 9.
    Cremona, J.E.: Algorithms for modular elliptic curves, 2nd edn., p. 376. Cambridge University Press, Cambridge (1997), See Cremona’s webpage: for latest data and online bookMATHGoogle Scholar
  10. 10.
    Da̧abrowski, A.: On the symmetric power of an elliptic curve. In: Banaszak, G., Gajda, W., Krasoń, P. (eds.) Algebraic K-theory. Proceedings of the Research Conference, Adam Mickiewicz University. Contemporary Math., vol. 199, Poznań, September 4–8, 1995, pp. 59–82. Amer. Math. Soc., Providence (1996)Google Scholar
  11. 11.
    Delaunay, C.: Vérification numérique des conjectures de Deligne (French) (Numerical verification of conjectures of Deligne) (preprint, 2004); Part of his doctoral thesis, available from:
  12. 12.
    Deligne, P.: Les constantes des équations fonctionnelles (French). [The constants of functional equations.] Séminaire Delange-Pisot-Poitou: 1969/70, Théorie des Nombres, Fasc. 2, Exp. 19 bis, Secrétariat mathématique, Paris, p. 13 (1970); Deligne, P.: Les constantes des équations fonctionnelles des fonctions L (French). [The constants of functional equations of L-functions.] In: Deligne, P., Kuyk, W.(eds.) Modular functions of one variable, II. Proceedings of the International Summer School at the University of Antwerp. Lecture Notes in Math., vol. 349, pp. 501–597. Springer, Heidelberg (1973); Correction In: Birch, B.J., Kuyk, W.(ed.) Modular functions of one variable, IV. Lecture Notes in Math., vol. 476, p. 149. Springer, Heidelberg (1975)Google Scholar
  13. 13.
    Deligne, P.: Les constantes locales de l’équation fonctionnelle de la fonction L d’Artin d’une représentation orthogonale (French). [The local constants of the functional equation of the Artin L-function of an orthogonal representation]. Invent. Math. 35, 299–316 (1976)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Deligne, P.: Valeurs de fonctions L et périodes d’intégrales (French). [Values of L-functions and periods of integrals]. In: Borel, A., Casselman, W. (eds.) Automorphic forms, representations, and L-functions, part 2, Proceedings of the Symposium in Pure Mathematics of the American Mathematical Society (Twenty-fifth Summer Research Institute, Corvallis, OR), vol. XXXIII(2), pp. 313–346. Amer. Math. Soc, Providence, RI (1979), Available online from: Google Scholar
  15. 15.
    Dirichlet, P.G.L.: Vorlesungen über Zahlentheorie (German). [Lectures on Number Theory.] With supplements by R. Dedekind (First published in 1863); In: Stillwell, J. (ed.) History of Mathematics. Lectures on number theory, vol. 16, p. 275. Amer. Math. Soc, Providence, RI (1999)Google Scholar
  16. 16.
    Dokchitser, T.: Computing Special Values of Motivic L-functions. Experiment. Math. 13(2), 137–149 (2004), Online at: MATHMathSciNetGoogle Scholar
  17. 17.
    Dokchister, T., de Jeu, R., Zagier, D.: Numerical verification of Beilinson’s conjecture for K 2 of hyperelliptic curves. Compositio Math. 142(2), 339–373 (2006), Online at: CrossRefGoogle Scholar
  18. 18.
    Dummigan, N.: Tamagawa factors for certain semi-stable representations. Bull. London Math. Soc. 37, 835–845 (2005)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Dummigan, N., Martin, P.: Euler factors and root numbers for symmetric powers of elliptic curves (in preparation)Google Scholar
  20. 20.
    Euler, L.: Introductio in analysin infinitorum. I (Latin). [Introduction to the Analysis of the Infinite. Part I.] (first published in 1748); In: Blanton, J.D. (ed.) English translation: Introduction to the Analysis of the Infinite: Book I. Opera Omnia: Series 1, vol. 1, p. 348. Springer, New York (1988)Google Scholar
  21. 21.
    Flach, M.: The equivariant Tamagawa number conjecture: a survey. With an appendix by C. Greither. In: Burns, D., Popescu, C., Sands, J., Solomon, D. (eds.) Stark’s conjectures: recent work and new directions. Papers from the International Conference on Stark’s Conjectures and Related Topics held at Johns Hopkins University, Baltimore, MD, August 5–9, 2002. Contemp. Math., vol. 358, pp. 79–125. Amer. Math. Soc, Providence, RI (2004)Google Scholar
  22. 22.
    Fröhlich, A., Queyrut, J.: On the functional equation of the Artin L-function for characters of real representations. Invent. Math. 20, 125–138 (1973)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Garrett, P.B.: Decomposition of Eisenstein series: Rankin triple products. Ann. of Math. 125(2), 209–235 (1987)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Gross, B., Kudla, S.S.: Heights and the central critical values of triple product L-functions. Compositio Math. 81(2), 143–209 (1992)MATHMathSciNetGoogle Scholar
  25. 25.
    Halberstadt, E.: Signes locaux des courbes elliptiques en 2 et 3 (French). [Local root numbers of elliptic curves for p = 2 or 3: an abridged English version is included]. C. R. Acad. Sci. Paris Sér. I Math. 326(9), 1047–1052 (1998)MATHMathSciNetGoogle Scholar
  26. 26.
    Harris, M., Kudla, S.S.: The central critical value of a triple product L-function. Ann. of Math. (2) 133(3), 605–672 (1991)Google Scholar
  27. 27.
    Hecke, E.: Analysis und Zahlentheorie: Vorlesung Hamburg 1920 (German). [Analysis and Number Theory: Hamburg Lectures 1920.] Edited and with a foreword by P. Roquette. In: Dokumente zur Geschichte der Mathematik [Documents on the History of Mathematics], vol. 3, p. 234. Vieweg & Sohn, Braunschweig (1987)Google Scholar
  28. 28.
    Hida, Y., Li, X.S., Bailey, D.H.: Quad-Double Arithmetic: Algorithms, Implementation, and Application. Tech. Report LBNL-46996, Lawrence Berkeley National Laboratory (2000), See: Bailey’s high-precision libraries are online at:
  29. 29.
    Kim, H.H.: Functoriality for the exterior square of GL 4 and the symmetric fourth of GL 2. J. Amer. Math. Soc. 16(1), 139–183 (2003)MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Kim, H.H., Shahidi, F.: Cuspidality of symmetric powers with applications. Duke Math. J. 112(1), 177–197 (2002)MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    lANGLANDS, R.P.: Problems in the theory of automorphic forms. In: Taam, C.T. (ed.) Lectures in modern analysis and applications, III. Lecture Notes in Math., vol. 170, pp. 18–61. Springer, Berlin (1970); See also his Letter to André Weil (January 1967), Online from:
  32. 32.
    Lavrik, A.F.: On functional equations of Dirichlet functions. Math. USSR, Izv. 1, 421–432 (1968)Google Scholar
  33. 33.
    Mestre, J.-F., Schappacher, N.: Séries de Kronecker et fonctions L des puissances symétriques de courbes elliptiques sur Q (French). [Kronecker series and L-functions of symmetric powers of elliptic curves over Q]. In: van der Geer, G., Oort, F., Steenbrink, J. (eds.) Arithmetic algebraic geometry. Papers from the conference held in Texel. Progress in Mathematics, vol. 89, pp. 209–245. Birkhäuser, Boston (1991)Google Scholar
  34. 34.
    PARI/GP, version 2.2.11, Bordeaux (France) (2005),
  35. 35.
    Rapoport, M., Schappacher, N., Schneider, P. (eds.): Beilinson’s conjectures on special values of L-functions. Perspectives in Mathematics, vol. 4, p. 373. Academic Press, Boston (1988)Google Scholar
  36. 36.
    Rohrlich, D.E.: Variation of the root number in families of elliptic curves. Compos. Math. 87, 119–151 (1993)MATHMathSciNetGoogle Scholar
  37. 37.
    Rubinstein, M.O.: L. C++ class library and command line program for computing zeros and values of L-functions. Includes data,
  38. 38.
    Saito, T.: t The sign of the functional equation of the L-function of an orthogonal motive. Invent. Math. 120(1), 119–142 (1995)MATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Serre, J.-P.: Facteurs locaux des fonctions zêta des variétés algébriques (définitions et conjectures) (French). [Local factors of zeta functions of algebraic varieties (definitions and conjectures).]. In: Séminaire Delange-Pisot-Poitou, 1969/70, Théorie des Nombres, Fasc. 2, Exp., vol. 19, Secrétariat mathématique, Paris (1970)Google Scholar
  40. 40.
    Serre, J.-P.: Propriétés galoisiennes des points d’ordre fini des courbes elliptiques (French). [Galois properties of points of finite order of elliptic curves.]. Invent. Math. 15(4), 259–331 (1972)Google Scholar
  41. 41.
    Serre, J.-P., Tate, J.: Good reduction of abelian varieties. Ann. of Math. 88(2), 492–517 (1968)CrossRefMathSciNetGoogle Scholar
  42. 42.
    Shahidi, F.: Symmetric power L-functions for GL(2). In: Kisilevsky, H., Murty, M.R. (eds.) Elliptic curves and related topics. CRM Proceedings & Lecture Notes, vol. 4, pp. 159–182. American Mathematical Society, Providence, RI (1994)Google Scholar
  43. 43.
    Stark, H.M.: L-functions at s = 1. I. L-functions for quadratic forms. II. Artin L-functions with rational characters. III. Totally real fields and Hilbert’s twelfth problem. IV. First derivatives at s = 0. Adv. in Math. 7, 301–343 (1971); 17(1), 60–92 (1975), 22(1), 64–84 (1976), 35(3), 197–235 (1980) MATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Tate, J.T.: Algebraic cycles and poles of zeta functions. In: Schilling, O.F.G. (ed.) Arithmetical Algebraic Geometry. Proceedings of a Conference at Purdue Univ. 1963, pp. 93–110. Harper & Row, New York (1965)Google Scholar
  45. 45.
    Taylor, R.: Automorphy for some l-adic lifts of automorphic mod l representations II (preprint), Available from:
  46. 46.
    Wallis, J.: Arithmetica infinitorum (Latin). Originally published (1656); English translation: The Arithmetic of Infinitesimals by J. A. Stedall, Sources and Studies in the History of Mathematics and Physical Sciences Series, p. 192. Springer, Heidelberg (2004)Google Scholar
  47. 47.
    Watkins, M.: Computing the modular degree of an elliptic curve. Experiment. Math. 11(4), 487–502 (2002), Online from: MATHMathSciNetGoogle Scholar
  48. 48.
    Zagier, D., Gangl, H.: Classical and elliptic polylogarithms and special values of L-series. In: Gordon, B.B., Lewis, J.D., Müller-Stach, S., Saito, S., Yui, N. (eds.) The arithmetic and geometry of algebraic cycles. Proceedings of the NATO Advanced Study Institute held as part of the 1998 CRM Summer School at Banff, AB, June 7–19. NATO Science Series C: Mathematical and Physical Sciences, vol. 548, pp. 561–615. Kluwer Academic Publishers, Dordrecht (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Phil Martin
    • 1
  • Mark Watkins
    • 1
  1. 1.University of Bristol 

Personalised recommendations