Computing Pro-P Galois Groups

  • Nigel Boston
  • Harris Nover
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4076)


We describe methods for explicit computation of Galois groups of certain tamely ramified p-extensions. In the finite case this yields a short list of candidates for the Galois group. In the infinite case it produces a family or few families of likely candidates.


Galois Group Galois Theory Cohomological Condition Virtual Cohomological Dimension Potential Ancestor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benjamin, E., Lemmermeyer, F., Snyder, C.: Imaginary quadratic number fields with cyclic Cl 2(k 1). J. Number Theory 67, 229–245 (1997)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Benjamin, E., Lemmermeyer, F., Snyder, C.: Imaginary quadratic fields k with Cl 2(k) = (2,2m) and d(Cl 2(k 1)) = 2. Pac. J. Math. 198, 15–31 (2001)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Benjamin, E., Lemmermeyer, F., Snyder, C.: Imaginary quadratic fields with Cl 2(k) = (2,2,2). J. Number Theory 103, 38–70 (2003)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bosma, W., Cannon, J.J.: Handbook of Magma functions, School of Mathematics and Statistics, University of Sydney (1996)Google Scholar
  5. 5.
    Boston, N.: Some Cases of the Fontaine-Mazur Conjecture II. J. Number Theory 75, 161–169 (1999)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Boston, N.: Reducing the Fontaine-Mazur conjecture to group theory. In: Progress in Galois Theory, Proceedings of Thompson’s 70th Birthday Conference, pp. 39–50 (2005)Google Scholar
  7. 7.
    Boston, N., Leedham-Green, C.R.: Explicit computation of Galois p-groups unramified at p. J. Algebra 256, 402–413 (2002)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Boston, N., Perry, D.: Maximal 2-extensions with restricted ramification. J. Algebra 232, 664–672 (2000)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Broadhurst, D.J.: On the enumeration of irreducible k-fold Euler sums and their roles in knot theory and field theory (preprint)Google Scholar
  10. 10.
    Bush, M.R.: Computation of Galois groups associated to the 2-class towers of some quadratic fields. J. Number Theory 100, 313–325 (2003)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Bush, M.R., Labute, J.: Mild pro-p groups with 4-generators (preprint)Google Scholar
  12. 12.
    Eick, B., Koch, H.: On maximal 2-extensions of ℚ with given ramification. In: The Proc. St. Petersburg Math. Soc. (Russian), AMS Translations (English version) (to appear)Google Scholar
  13. 13.
    Fontaine, J.-M., Mazur, B.: Geometric Galois representations, in “Elliptic curves and modular forms. In: Proceedings of a conference Elliptic curves and modular forms, Hong Kong, December 18-21. International Press, Cambridge and Hong Kong (1993)Google Scholar
  14. 14.
    Gerth, F.: A density result for some imaginary quadratic fields with infinite Hilbert 2-class field towers. Arch. Math. (Basel) 82, 23–27 (2004)Google Scholar
  15. 15.
    Hajir, F., Maire, C.: Tamely ramified towers and discriminant bounds for number fields. II. J. Symbolic Comput. 33, 415–423 (2002)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Koch, H.: Galois theory of p-extensions. With a foreword by I. R. Shafarevich. Translated from the 1970 German original by Franz Lemmermeyer. With a postscript by the author and Lemmermeyer. Springer Monographs in Mathematics. Springer, Berlin (2002)Google Scholar
  17. 17.
    Kuhnt, T.: Generalizations of the theorem of Golod-Shafarevich and applications, UIUC Ph.D. thesis (2002)Google Scholar
  18. 18.
    Labute, J.: Mild pro-p-groups and Galois groups of p-Extensions of ℚ. J. Reine Angew. Math. (to appear)Google Scholar
  19. 19.
    Maire, C.: Cohomology of pro-p extensions of number fields and the Fontaine-Mazur conjecture (preprint)Google Scholar
  20. 20.
    O’Brien, E.A.: The p-group generation algorithm. J. Symbolic Comput. 9, 677–698 (1990)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Schmidt, A.: Circular sets of prime numbers and p-extensions of the rationals. J. Reine Angew. Math. (to appear)Google Scholar
  22. 22.
    Schneps, L.: Five Lie algebras, Lecture at AIM (April 2004), Available from:
  23. 23.
    Shafarevich, I.R.: Extensions with prescribed ramification points (Russian). IHES Publ. Math. 18, 71–95 (1964)Google Scholar
  24. 24.
    Sloane, N.J.A.: On-Line Encyclopedia of Integer Sequences,
  25. 25.
    Steurer, A.: On the Galois group of the 2-class tower of a quadratic field, UMD Ph.D. thesis (2006)Google Scholar
  26. 26.
    Wingberg, K.: On the maximal unramified p-extension of an algebraic number field. J. Reine Angew. Math. 440, 129–156 (1993)MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Nigel Boston
    • 1
  • Harris Nover
    • 1
  1. 1.Department of MathematicsUniversity of WisconsinMadisonUSA

Personalised recommendations