Advertisement

Data Alignment Via Dynamic Time Warping as a Prerequisite for Batch-End Quality Prediction

  • Geert Gins
  • Jairo Espinosa
  • Ilse Y. Smets
  • Wim Van Brempt
  • Jan F. M. Van Impe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4065)

Abstract

In this work, a 4-phase dynamic time warping is implemented to align measurement profiles from an existing chemical batch reactor process, making all batch measurement profiles equal in length, while also matching the major events occurring during each batch run.

This data alignment is the first step towards constructing an inferential batch-end quality sensor, capable of predicting 3 quality variables before batch run completion using a multivariate statistical partial least squares model. This inferential sensor provides on-line quality predictions, allowing corrective actions to be performed when the quality of the polymerization product does not meet the specifications, saving valuable production time and reducing operation cost.

Keywords

Batch Process Dynamic Time Warping Data Alignment Batch Phase Warping Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kassidas, A., MacGregor, J.F., Taylor, P.A.: Synchronization of batch trajectories using dynamic time warping. AIChE J. 44(4), 864–875 (1998)CrossRefGoogle Scholar
  2. 2.
    Kassidas, A., Taylor, P.A., MacGregor, J.F.: Off-line diagnosis of deterministic faults in continuous dynamic multivariate processes using speech recognition methods. J. Proc. Cont. 8(5-6), 381–393 (1998)CrossRefGoogle Scholar
  3. 3.
    Lee, J.H., Dorsey, A.W.: Monitoring of batch processes through state-space models. AIChE J. 50(6), 1198–1210 (2004)CrossRefGoogle Scholar
  4. 4.
    Lu, N., Yao, Y., Gao, F.: Two-dimensional dynamic PCA for batch process monitoring. AIChE J. 51(12), 3300–3304 (2005)CrossRefGoogle Scholar
  5. 5.
    Nomikos, P., MacGregor, J.F.: Monitoring batch processes using multiway principal component analysis. AIChE J. 40(8), 1361–1375 (1994)CrossRefGoogle Scholar
  6. 6.
    Nomikos, P., MacGregor, J.F.: Multi-way partial least squares in monitoring batch processes. Chemometr. Intell. Lab. 30, 97–108 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Geert Gins
    • 1
  • Jairo Espinosa
    • 2
  • Ilse Y. Smets
    • 1
  • Wim Van Brempt
    • 3
  • Jan F. M. Van Impe
    • 1
  1. 1.BioTeC, Dept. of Chemical EngineeringKatholieke Universiteit LeuvenLeuvenBelgium
  2. 2.Facultad de MinasUniversidad Nacional de ColombiaMedellínColombia
  3. 3.IPCOS – ISMC officeLeuvenBelgium

Personalised recommendations