It is commonly accepted that the most powerful approaches for increasing the efficiency of visual content delivery are personalisation and adaptation of visual content according to user’s preferences and his/her individual characteristics. In this work, we present results of a comparative study of colour contrast and characteristics of colour change between successive video frames for normal vision and two most common types of colour blindness: the protanopia and deuteranopia. The results were obtained by colour mining from three videos of different kind including their original and simulated colour blind versions. Detailed data regarding the reduction of colour contrast, decreasing of the number of distinguishable colours, and reduction of inter-frame colour change rate in dichromats are provided.


Video Frame Image Retrieval Normal Vision Colour Contrast Visual Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hanjalić, A.: Content-based analysis of digital video, 194 p. Kluwer Academic Publisher, Boston (2004)MATHGoogle Scholar
  2. 2.
    Tseng, B.L., Lin, C.-Y., Smith, J.R.: Using MPEG-7 and MPEG-21 for personalizing video. IEEE Trans. Multimedia 11, 42–52 (2004)CrossRefGoogle Scholar
  3. 3.
    Wu, M.Y., Ma, S., Shu, W.: Scheduled video delivery — a scalable on-demand video delivery scheme. IEEE Trans. Multimedia 8, 179–187 (2006)CrossRefGoogle Scholar
  4. 4.
    Feiten, B., Wolf, I., Oh, E., Seo, J., Kim, H.K.: Audio adaptation according to usage environment and perceptual quality metrics. IEEE Trans. Multimedia 7, 446–453 (2005)CrossRefGoogle Scholar
  5. 5.
    Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Trans. Pattern Analysis Mach. Intel. 22, 1349–1380 (2000)CrossRefGoogle Scholar
  6. 6.
    Vetro, A., Timmerer, C.: Digital item adaptation: overview of standardization and research activities. IEEE Trans. Multimedia 7, 418–426 (2005)CrossRefGoogle Scholar
  7. 7.
    Nam, J., Ro, Y.M., Huh, Y., Kim, M.: Visual content adaptation according to user perception characteristics. IEEE Trans. Multimedia 7, 435–445 (2005)CrossRefGoogle Scholar
  8. 8.
    Ghinea, G., Thomas, J.P.: Quality of perception: user quality of service in multimedia presentations. IEEE Trans. Multimedia 7, 786–789 (2005)CrossRefGoogle Scholar
  9. 9.
    ISO: Information Technology. Multimedia Framework. Part 7: Digital item adaptation. ISO/IEC 21000–7 (2004)Google Scholar
  10. 10.
    Bozdogan, H. (ed.): Statistical Data Mining and Knowledge Discovery, 624 p. Chapman & Hall/CRC Press, Boca Raton (2004)MATHGoogle Scholar
  11. 11.
    Abbass, H.A., Sarker, R.A., Newton, C.S. (eds.): Data Mining: A Heuristic Approach, 310 p. Idea Group Publishing, Hershey (2002)Google Scholar
  12. 12.
    Zhu, X., Wu, X., Elmagarmid, A.K., Feng, Z., Wu, L.: Video data mining: Semantic indexing and event detection from the association perspective. IEEE Trans. Knowl. Data Eng. 17, 665–677 (2005)CrossRefGoogle Scholar
  13. 13.
    Joyce, R.A., Liu, B.: Temporal segmentation of video using frame and histogram space. IEEE Trans. Multimedia 8, 130–140 (2006)CrossRefGoogle Scholar
  14. 14.
    Manjunath, B.S., Ohm, J.R., Vasudevan, V.V., Yamada, A.: Color and texture descriptors. IEEE Trans. Circ. Syst. Video Technol. 11, 703–715 (2001)CrossRefGoogle Scholar
  15. 15.
    Ferman, A.M., Tekalp, A.M., Mehrotra, R.: Robust color histogram descriptors for video segment retrieval and identification. IEEE Trans. Image Proc. 11, 497–508 (2002)CrossRefGoogle Scholar
  16. 16.
    Huang, J., Kumar, S.R., Mitra, M., Zhu, W.J., Zabih, R.: Image indexing using color correlograms. In: 16th IEEE Conf. on Computer Vision and Pattern Recognition, San Juan, Puerto Rico, pp. 762–768 (1997)Google Scholar
  17. 17.
    Kovalev, V., Volmer, S.: Color co-occurrence descriptors for querying-by-example. In: Int. Conf. on Multimedia Modelling, Lausanne, Switzerland, pp. 32–38. IEEE Computer Society Press, Los Alamitos (1998)Google Scholar
  18. 18.
    Lee, H.Y., Lee, H.K., Ha, Y.H.: Spatial color descriptor for image retrieval and video segmentation. IEEE Trans. Multimedia 5, 358–367 (2003)CrossRefGoogle Scholar
  19. 19.
    Viénot, F., Brettel, H., Ott, L., M’Barek, A.B., Mollon, J.: What do color-blind people see? Nature 376, 127–128 (1995)CrossRefGoogle Scholar
  20. 20.
    Rigden, C.: The eye of the beholder - designing for colour-blind users. British Telecom Engineering 17, 2–6 (1999)Google Scholar
  21. 21.
    Brettel, H., Viénot, F., Mollon, J.: Computerized simulation of color appearance for dichromats. Journal Optical Society of America 14, 2647–2655 (1997)CrossRefGoogle Scholar
  22. 22.
    Viénot, F., Brettel, H., Mollon, J.: Digital video colourmaps for checking the legibility of displays by dichromats. Color Research Appl. 24, 243–252 (1999)CrossRefGoogle Scholar
  23. 23.
    Meyer, G.W., Greenberg, D.P.: Color-defective vision and computer graphics displays. IEEE Computer Graphics and Applications 8, 28–40 (1988)CrossRefGoogle Scholar
  24. 24.
    Kovalev, V.A.: Towards image retrieval for eight percent of color-blind men. In: 17th Int. Conf. On Pattern Recognition (ICPR 2004), Cambridge, UK, vol. 2, pp. 943–946. IEEE Computer Society Press, Los Alamitos (2004)CrossRefGoogle Scholar
  25. 25.
    Kovalev, V.A., Petrou, M.: Optimising the choice of colours of an image database for dichromats. In: Perner, P., Imiya, A. (eds.) MLDM 2005. LNCS, vol. 3587, pp. 456–465. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  26. 26.
    Walraven, J., Alferdinck, J.W.: Color displays for the color blind. In: ISandT/SID Fifth Color Imaging Conference: Color Science, Systems and Appl., Scottsdale, Arizona, pp. 17–22 (1997)Google Scholar
  27. 27.
    Becker, R.A., Chambers, J.M., Wilks, A.R.: The New S Language. Chapman and Hall, New York (1988)MATHGoogle Scholar
  28. 28.
    Everitt, B.: A Handbook of Statistical Analyses Using S-Plus, 2nd edn., 256 p. Chapman & Hall/CRC Press, Boca Raton (2002)MATHGoogle Scholar
  29. 29.
    Hunt, R.W.G.: Measuring Color, 2nd edn. Science and Industrial Technology. Ellis Horwood, New York (1991)Google Scholar
  30. 30.
    Sharma, G.: Digital Color Imaging Handbook. Electrical Engineering & Applied Signal Processing, vol. 11, 800 p. CRC Press LLC, New York (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Vassili A. Kovalev
    • 1
  1. 1.Centre for Vision, Speech and Signal Processing, School of Electronics and Physical SciencesUniversity of SurreyGuildford, SurreyUnited Kingdom

Personalised recommendations