UP-DRES User Profiling for a Dynamic REcommendation System

  • Enza Messina
  • Daniele Toscani
  • Francesco Archetti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4065)


The WWW is actually the most dynamic and attractive information exchange place. Finding useful information is hard due to huge data amount, varied topics and unstructured contents. In this paper we present a web browsing support system that proposes personalized contents. It is integrated in the content management system and it runs on the server hosting the site. It processes periodically site contents, extracting vectors of the most significant words. A topology tree is defined applying hierarchical clustering. During online browsing, viewed contents are processed and mapped in the vector space previously defined. The centroid of these vectors is compared with the topology tree nodes’ centroids to find the most similar; its contents are presented to the user as link suggestions or dynamically created pages. Personal profile is saved after every session and included in the analysis during same user’s subsequent visits, avoiding the cold start problem.


User Profile Content Extractor Collaborative Filter Cold Start Problem Word Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balabanovic, M., Shoham, Y.: Fab: Content-Based, Collaborative Recommendation. Communications of the ACM 40(3), 66–72 (1997)CrossRefGoogle Scholar
  2. 2.
    Baldi, P., Frasconi, P., Smyth, P.: Modeling the Internet and the Web. Wiley, Chichester (2003)Google Scholar
  3. 3.
    Basu, C., Hirsh, H., Cohen, W.: Recommendation as Classification: Using Social and Content-Based Information in Recommendation. In: Proc. of the 15th National Conference on Artificial Intelligence (AAAI 1998), pp. 714–720 (1998)Google Scholar
  4. 4.
    Berghel, H.: Cyberspace 2000: dealing with information overload. Communications of the ACM 40(2), 19–24 (1997)CrossRefGoogle Scholar
  5. 5.
    Bharat, K., Kamba, T., Albers, M.: Personalized Interactive News on the Web. Multimedia Systems 6(5), 349–358 (1998)CrossRefGoogle Scholar
  6. 6.
    Breese, J.S., Heckerman, D., Kadie, C.: Empirical Analysis of Predictive Algorithms for Collaborative Filtering. In: Proc. of the 14th Conference on Uncertainty in Artificial Intelligence (UAI 1998), pp. 43–52 (1998)Google Scholar
  7. 7.
    Chakrabarti, S.: Mining the web. In: Discovering knowledge from hypertext data. Morgan Kaufmann, San Francisco (2003)Google Scholar
  8. 8.
    Chen, Z., Wai-Chee Fu, A., Chi-Hung Tong, F.: Optimal algorithms for finding user access sessions from very large Web logs. World Wide Web: Internet and Information Systems 6, 259–279 (2003)Google Scholar
  9. 9.
    Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society B 39, 1–38 (1997)MathSciNetGoogle Scholar
  10. 10.
    Dhillon, I., Kogan, J., Nicholas, C.: Feature Selection and Document Clustering. In: Survey of Text Mining, ch. 4, pp. 73–100. Springer, New York (2004)Google Scholar
  11. 11.
    Fraley, C., Raftery, A.: How many clusters? Which clustering method? Answers via model based cluster analysis. Computer Journal 41(8), 578–588 (1998)MATHCrossRefGoogle Scholar
  12. 12.
    Goldberg, D., Nichols, D., Oki, B.M., Terry, D.B.: Using Collaborative Filtering to Weave an Information Tapestry. Communications of the ACM 35(12), 61–70 (1992)CrossRefGoogle Scholar
  13. 13.
    Kostkova, P., Diallo, G., Jawaheer, G.: User profiling for semantic browsing in medical digital libraries. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 827–831. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Joachims, T., Freitag, D., Mitchell, T.M.: WebWatcher: A Tour Guide for the World Wide Web. In: Proc. of the 15th International Joint Conference on Artificial Intelligence (IJCAI 1997), pp. 770–777 (1997)Google Scholar
  15. 15.
    Kelly, D., Teevan, J.: Implicit Feedback for Inferring User Preference: A Bibliography. SIGIR Forum 37(2), 18–28 (2003)CrossRefGoogle Scholar
  16. 16.
    Kim, H.R., Chan, P.K.: Learning Implicit User Interest Hierarchy for Context in Personalization. In: Proc. of the 8th international conference on Intelligent user interfaces, Miami, Florida, USA, pp. 101–108 (2003)Google Scholar
  17. 17.
    Kirsh, D.: A few thoughts on cognitive overload. Intellectica, 19–51 (2000)Google Scholar
  18. 18.
    Konstan, J.A., Miller, B.N., Maltz, D., Herlocker, J.L., Gordon, L.R., Riedl, J.: GroupLens: Applying Collaborative Filtering to Usenet News. Communications of the ACM 40(3), 77–87 (1997)CrossRefGoogle Scholar
  19. 19.
    Lieberman, H.: Letizia: An Agent That Assists Web Browsing. In: Proc. of the 14th International Joint Conference on Artificial Intelligence (IJCAI 1995), pp. 924–929 (1995)Google Scholar
  20. 20.
    Lieberman, H.: Autonomous Interface Agents. In: Proc. of the Conference on Human Factors in Computing Systems (CHI 1997), pp. 67–74 (1997)Google Scholar
  21. 21.
    Manber, U., Patel, A., Robison, J.: Experience with Personalization on Yahoo! Communications of the ACM 43(8), 35–39 (2000)CrossRefGoogle Scholar
  22. 22.
    McCallum, A.K., Nigam, K., Rennie, J., Seymore, K.: Automating the Construction of Internet Portals with Machine Learning. Information Retrieval 3(2), 127–163 (2000)CrossRefGoogle Scholar
  23. 23.
    Middleton, S.E., Shadbolt, N.R., De Roure, D.C.: Capturing Interest through Inference and Visualization: Ontological User Profiling in Recommender Systems. In: Proc. 2nd Conference on Knowledge Capture, pp. 62–69 (2003)Google Scholar
  24. 24.
    Morita, M., Shinoda, Y.: Information Filtering Based on User Behavior Analysis and Best Match Text Retrieval. In: Proc. of the 17th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 1994), pp. 272–281 (1994)Google Scholar
  25. 25.
    Resnick, P., Iacovou, N., Suchak, M., Bergstorm, J.R.P.: GroupLens: An Open Architecture for Collaborative Filtering of Netnews. In: Proc. of the ACM 1994 Conference on Computer Supported Cooperative Work (CSCW 1994), pp. 175–186 (1994)Google Scholar
  26. 26.
    Salton, G., Buckley, C.: Term Weighting Approaches in Automatic Text Retrieval, Technical Report, COR-87-881, Department of Computer Science, Cornell University (1987)Google Scholar
  27. 27.
    Sarwar, B.M., Karypis, G., Konstan, J.A.: Analysis of Recommendation Algorithms for E-commerce. In: Proc. of the 2nd ACM Conference on Electronic Commerce (EC 2000), pp. 158–167 (2000)Google Scholar
  28. 28.
    Schafer, J.B., Konstan, J.A., Riedl, J.: Meta-recommendation Systems: User-controlled Integration of Diverse Recommendations. In: Proc. of the 11th International Conference on Information and Knowledge Management (CIKM 2002), pp. 43–51 (2002)Google Scholar
  29. 29.
    Steinbach, M., Karypis, G., Kumar, V.: A comparison of Document Clustering Techniques. In: Proc. of KDD 2000 Workshop on Text Mining, pp. 109–110 (2000)Google Scholar
  30. 30.
    Sugiyama, K., Hatano, K., Yoshikawa, M.: Adaptive Web Search Based on User Profile Construction without Any Effort from Users. In: Proc. of 13th International World Wide Web Conference, pp. 675–684 (2004)Google Scholar
  31. 31.
    Terveen, L., Hill, W., Amento, B., McDonald, D., Creter, J.: PHOAKS: A System for Sharing Recommendations. Communications of the ACM 40(3), 59–62 (1997)CrossRefGoogle Scholar
  32. 32.
    Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998)MATHGoogle Scholar
  33. 33.
    Cadez, I.V., Heckerman, D., Meek, C., Smyth, P., White, S.: Model-based clustering and visualization of navigation patterns on a Web site. Data Mining and Knowledge Discovery 7(4), 399–424 (2003)CrossRefMathSciNetGoogle Scholar
  34. 34.
    Kashyap, V., Ramakrishnan, C., Thomas, C., Bassu, D., Rindflesch, T.C., Sheth, A.: TaxaMiner: An Experimentation Framework for Automated Taxonomy Bootstrapping. International Journal of Web and Grid Services, Special Issue on Semantic Web and Mining Reasoning (September 2005) (to appear)Google Scholar
  35. 35.
    Cadez, I.V., Heckerman, D., Meek, C., Smyth, P., White, S.: Model-based clustering and visualization of navigation patterns on a Web site. Data Mining and Knowledge Discovery 7(4), 399–424 (2003)CrossRefMathSciNetGoogle Scholar
  36. 36.
    Blanc, E., Giudici, P.: Sequence Rules for Web Clickstream Analysis. In: Perner, P. (ed.) Advances in Data Mining. LNCS (LNAI), vol. 2394, pp. 1–14. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  37. 37.
    Perner, P., Fiss, G.: Intelligent E-marketing with Web Mining, Personalization, and User-Adpated Interfaces. In: Perner, P. (ed.) Advances in Data Mining. LNCS (LNAI), vol. 2394, p. 37. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  38. 38.
    Archetti, F., Campanelli, P., Fersini, E., Messina, E.: A Hierarchical Document Clustering Environment based on the Induced Bisecting k-Means. In: Larsen, H.L., Pasi, G., Ortiz-Arroyo, D., Andreasen, T., Christiansen, H. (eds.) FQAS 2006. LNCS (LNAI), vol. 4027. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Enza Messina
    • 1
  • Daniele Toscani
    • 1
    • 2
  • Francesco Archetti
    • 1
    • 2
  1. 1.DISCOUniversità degli Studi di Milano BicoccaMilanoItaly
  2. 2.Consorzio Milano RicercheMilanoItaly

Personalised recommendations