Data Preparation of Web Log Files for Marketing Aspects Analyses

  • Meike Reichle
  • Petra Perner
  • Klaus-Dieter Althoff
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4065)


This article deals with several aspects of a marketing-oriented analysis of web log files. It discusses their preprocessing and possible ways to enrich the raw data that can be gained from a web log file in order to facilitate a later use in different analyses. Further, we look at the question which requirements a good web log analysis software needs to meet and offer an overview over current and future analysis practices including their advantages and disadvantages.


Internet Protocol Customer Relationship Management Data Preparation Internet Protocol Address Content Management System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Perner, P., Fiss, G.: Intelligent E-marketing with Web Mining, Personalization, and User-Adpated Interfaces. In: Perner, P. (ed.) Advances in Data Mining. LNCS (LNAI), vol. 2394, pp. 37–52. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Apache HTTP Server Documentation Project: Combined Log Format (accessed, January 23, 2006),
  3. 3.
    Perner, P.: Einrichtung zur automatischen Ermittlung der Nutzung von Web-Präsentationen und/oder On-line Verkaufsmodellen, Patent D 198 01 400.7-08 Google Scholar
  4. 4.
  5. 5.
    Clicktracks Software,
  6. 6.
    Webtrends Software,
  7. 7.
    Deepmetrix Software,
  8. 8.
    Scherbina, A., Kuznetsov, S.: Clustering of Web Sessions Using Levenshtein Metric. In: Perner, P. (ed.) ICDM 2004. LNCS, vol. 3275, pp. 127–133. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Halvey, M., Keane, M.T., Smyth, B.: Birds of a Feather Surf Together: Using Clustering Methods to Improve Navigation Prediction from Internet Log Files. In: Perner, P., Imiya, A. (eds.) MLDM 2005. LNCS, vol. 3587, pp. 174–183. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Blanc, E., Giudici, P.: Sequence Rules for Web Clickstream Analysis. In: Perner, P. (ed.) Advances in Data Mining. LNCS (LNAI), vol. 2394, pp. 1–14. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Ahlemeyer-Stubbe: Analyseorientierte Informationssysteme = Data Warehouse. In: Perner, P. (ed.) Data Mining, Data Warehouse, and Knowledge Management, Proc. Industrial Conference on Data Mining ICDM, IBaI-Report 2001, pp. 30–39, ISSN 1431–2360Google Scholar
  12. 12.
    Rech, J., Althoff, K.-D.: Artificial Intelligence and Software Engineering - Status and Future Trends. Special Issue on Artificial Intelligence and Software Engineering, Zeitschrift Künstliche Intelligenz (3), 5–11 (2004)Google Scholar
  13. 13.
    Meo, R., Lanzi, P.L., Klemettinen, M. (eds.): Database Support for Data Mining Applications. LNCS, vol. 2682. Springer, Heidelberg (2004)MATHGoogle Scholar
  14. 14.
    Meersman, R., Aberer, K., Dillon, T. (eds.): Semantic Issues in e-Commerce Systems, vol. 111 (2003)Google Scholar
  15. 15.
    W3 Schools: HTML URL-encoding Reference (accessed, January 23, 2006),

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Meike Reichle
    • 1
  • Petra Perner
    • 1
  • Klaus-Dieter Althoff
    • 2
  1. 1.Institute of Computer Vision and Applied Computer SciencesIBaILeipzig
  2. 2.University of Hildesheim 

Personalised recommendations