Image Based Musculoskeletal Modeling Allows Personalized Biomechanical Analysis of Gait

  • Lennart Scheys
  • Ilse Jonkers
  • Dirk Loeckx
  • Frederik Maes
  • Arthur Spaepen
  • Paul Suetens
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4072)


This paper describes a workflow, for building detailed, subject-specific musculoskeletal models from magnetic resonance (MR) images allowing enhanced biomechanical analysis of gait. . Bones are segmented semi-automatically using a hybrid approach while muscles attachments are retrieved automatically by atlas-based non-rigid registration followed by optional interactive correction using a user-friendly interface. Compared to previously proposed methods for MR based musculoskeletal modeling, integration of automated image processing procedures and problem-tailored visualization techniques result in a considerable reduction of the processing time, thus making MR-based musculoskeletal modeling practically feasible and more attractive.


Cerebral Palsy Gait Analysis Iterative Close Point Bone Model Biomechanical Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cook, R.E., Schneider, I., Hazlewood, M., Hillman, S., Robb, J.: Gait analysis alters decision-making in cerebral palsy. J. Pediatr. Orthop. 23(3), 292–295 (2003)CrossRefGoogle Scholar
  2. 2.
    White, S.C., Yack, H.J., Winter, D.A.: A three-dimensional musculoskeletal model for gait analysis. Journal of biomechanics 22(8-9), 885–893 (1989)CrossRefGoogle Scholar
  3. 3.
    Arnold, A., Liu, M.Q., Schwartz, M.H., Ounpuu, S., Delp, S.L.: The role of estimating muscle-tendon lengths and velocities of the hamstrings in the evaluation and treatment of crouch gait. Gait and Posture 23(3), 273–281 (2006)CrossRefGoogle Scholar
  4. 4.
    Duda, G.N., Brand, D., Freitag, S., Lierse, W., Schneider, E.: Variability of femoral muscle attachments. J. Biomech. 29(9), 1185–1190 (1996)CrossRefGoogle Scholar
  5. 5.
    Beals, R.K.: Developmental changes in the femur and the acetabulum in spastic paraplegia and diplegia. Dev. med. child. neurol. 11(3), 303–313 (1969)CrossRefGoogle Scholar
  6. 6.
    Arnold, A., Salinas, S., Delp, S.: Evaluation of a deformable musculoskeletal model: Application to planning muscle-tendon surgeries for crouch gait. An. Biomed. Eng. 29(1), 1–11 (2001)CrossRefGoogle Scholar
  7. 7.
    Arnold, A., Salinas, S., Asakawa, D., Delp, S.: Accuracy of muscle moment arms estimated from mri-based musculoskeletal models of the lower extremity. Comput. Aided Surg. 5(2), 108–119 (2000)CrossRefGoogle Scholar
  8. 8.
    Cohen, Z.A., McCarthy, D., Roglic, H., Henry, J., Rodkey, W., Steadman, J., Mow, V., Ateshian, G.: Computer-aided planning of patellofemoral joint OA surgery: Developing physical models from patient MRI. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 108–119. Springer, Heidelberg (1998)Google Scholar
  9. 9.
    Scheys, L., Jonkers, I., Schutyser, F., Pans, S., Spaepen, A., Suetens, P.: Image based methods to generate subject-specific musculoskeletal models for gait analysis using semi-automated segmentation. In: International Congress Series, vol. 1281, pp. 62–67 (2005)Google Scholar
  10. 10.
    Delp, S.L., Loan, J., et al.: A graphics-based software system to develop and analyze models of musculoskeletal structures. Comput. Biol. Med. 25(1), 21–34 (1995)CrossRefGoogle Scholar
  11. 11.
    Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multi-modality image registration by maximization of mutual information. IEEE Trans. Medical Imaging 16(2), 187–198 (1997)CrossRefGoogle Scholar
  12. 12.
    Van Leemput, K., Maes, F., Vandermeulen, D., Suetens, P.: Automated model-based bias field correction of MR images of the brain. IEEE Trans. Medical Imaging 18(10), 885–896 (1999)CrossRefGoogle Scholar
  13. 13.
    Zoroofi, R., Nishii, T., Sato, Y., Sugano, N., Yoshikawa, H., Tamura, S.: Segmentation of avascular necrosis of the femoral head using 3-D MR images. Comput. Med. Imaging Graph. 25(6), 511–521 (2001)CrossRefGoogle Scholar
  14. 14.
    Lorensen, W., Cline, H.: Marching cubes: A high resolution 3d surface construction algorithm. Computer Graphics Proceedings of the SIGGRAPH 21(4), 163–169 (1987)CrossRefGoogle Scholar
  15. 15.
    Vollmer, J., Mencl, R., Müller, H.: Improved laplacian smoothing of noisy surface meshes. In: Proc. 20th Conf. Eur. Assoc. for Computer Graphics, vol. 18(3) (1999)Google Scholar
  16. 16.
    Koskinen, S., Kujala, U.: Patellofemoral relationships and distal insertion of the vastus medialis muscle: a magnetic resonance imaging study in nonsymptomatic subjects and patients with patellar dislocation. Arthroscopy 8(4), 465–468 (1992)CrossRefGoogle Scholar
  17. 17.
    Loeckx, D., Maes, F., Vandermeulen, D., Suetens, P.: Nonrigid image registration using free form deformations with a local rigidity constraint. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 639–646. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Besl, P.J., McKay, N.D.: A method for registration of 3-d shapes. IEEE PAMI 14(2), 239–256 (1992)Google Scholar
  19. 19.
    Delp, S., Loan, J.P., Hoy, M.G., Zajac, F.E., Topp, E.L., Rosen, J.M.: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans. Medical Imaging 37(8), 757–767 (1990)Google Scholar
  20. 20.
    Cahill, D.R., Orland, M.J., Miller, G.M.: Atlas of cross-sectional anatomy. Lea and Febiger (1984)Google Scholar
  21. 21.
    Sethian, J.A.: Level set methods and fast marching methods, 2nd edn. Cambridge University Press, Cambridge (1999)MATHGoogle Scholar
  22. 22.
    Kepple, T., Arnold, A., Stanhope, S., Siegel, K.: Assessment of a method to estimate muscle attachments from surface landmarks. J. Biomech. 27(3), 365–371 (1994)CrossRefGoogle Scholar
  23. 23.
    Scheys, L., Jonkers, I., Spaepen, A., Suetens, P.: Individualized musculoskeletal modeling based on MR images: Is it worth the effort? Gait and posture 22S, 20 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Lennart Scheys
    • 1
    • 2
  • Ilse Jonkers
    • 2
  • Dirk Loeckx
    • 1
  • Frederik Maes
    • 1
  • Arthur Spaepen
    • 2
  • Paul Suetens
    • 1
  1. 1.Medical Image Computing (ESAT/PSI), Faculties of Medicine and EngineeringUniversity Hospital GasthuisbergLeuvenBelgium
  2. 2.Laboratory of Ergonomics and Occupational Biomechanics (Department of Kinesiology), FABER/K.U.LeuvenLeuvenBelgium

Personalised recommendations