Simulation of the Retroglossal Fluid-Structure Interaction During Obstructive Sleep Apnea

  • Franz Chouly
  • Annemie Van Hirtum
  • Pierre-Yves Lagrée
  • Jean-Roch Paoli
  • Xavier Pelorson
  • Yohan Payan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4072)


A method for computing the interaction between the airflow and the soft tissue during an Obstructive Apnea is presented. It is based on simplifications of the full continuum formulation (Navier-Stokes and finite elasticity) to ensure computation time compatible with clinical applications. Linear elasticity combined with a precomputation method allows fast prediction of the tissue deformation, while an asymptotic formulation of the full Navier-Stokes equations (Reduced Navier-Stokes/Prandtl equations) has been chosen for the flow. The accuracy of the method has already been assessed experimentally. Then, simulations of the complete collapsus at the retroglossal level in the upper airway have been carried out, on geometries extracted from pre-operative radiographies of two apneic patients. Post-operative geometries have been also used to check qualitatively if the predictions from the simulations are in agreement with the effects of the surgery.


Obstructive Sleep Apnea Obstructive Sleep Apnea Syndrome Obstructive Sleep Apnoea Complete Closure Posterior Pharyngeal Wall 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Malhotra, A., White, D.: Obstructive Sleep Apnoea. The Lancet 360, 237–245 (2002)CrossRefGoogle Scholar
  2. 2.
    Young, T., Palta, M., Dempsey, J., Skatrud, J., Weber, S., Badr, S.: The Occurence of Sleep-Disordered Breathing among Middle-Aged Adults. The New England Journal Of Medicine 328(17), 1230–1235 (1993)CrossRefGoogle Scholar
  3. 3.
    Ayappa, I., Rapoport, D.: The Upper Airway in Sleep: Physiology of the Pharynx. Sleep Medicine Reviews 7(1), 9–33 (2003)CrossRefGoogle Scholar
  4. 4.
    Li, Z., Kleinstreuer, C.: Blood Flow and Structure Interactions in a Stented Abdominal Aortic Aneurysm Model. Medical Engineering and Physics 27, 369–382 (2005)CrossRefGoogle Scholar
  5. 5.
    Tada, S., Tarbell, J.: A Computational Study of Flow in a Compliant Carotid Bifurcation-Stress Phase Angle Correlation with Shear Stress. Annals of Biomedical Engineering 33(9), 1202–1212 (2005)CrossRefGoogle Scholar
  6. 6.
    Shome, B., Wang, L., Santare, M., Prasad, A., Szeri, A., Roberts, D.: Modeling of Airflow in the Pharynx with Application to Sleep Apnea. J. Biom. Eng. 120, 416–422 (1998)CrossRefGoogle Scholar
  7. 7.
    Malhotra, A., Huang, Y., Fogel, R., Pillar, G., Edwards, J., Kikinis, R., Loring, S., White, D.: The Male Predisposition to Pharyngeal Collapse. Am. J. Respir Crit. Care Med. 166, 1388–1395 (2002)CrossRefGoogle Scholar
  8. 8.
    Hirtum, A.V., Pelorson, X., Lagrée, P.: In Vitro Validation of Some Flow Assumptions for the Prediction of the Pressure Distribution during Obstructive Sleep Apnoea. Medical & Biological Engineering & Computing 43, 162–171 (2005)CrossRefGoogle Scholar
  9. 9.
    Chouly, F.: Modélisation Physique des Voies Aériennes Supérieures pour le Syndrome d’Apnées Obstructives du Sommeil. Ph.D thesis, Grenoble, France (2005)Google Scholar
  10. 10.
    Chouly, F., Hirtum, A.V., Lagrée, P., Pelorson, X., Payan, Y.: An Attempt to Model Fluid-Structure Interaction during Obstructive Sleep Apnea Syndrome: Numerical Simulations and Validation. Journal of Fluids and Structures (submitted, 2006)Google Scholar
  11. 11.
    Payan, Y., Perrier, P.: Synthesis of V-V Sequences with a 2D Biomechanical Tongue Model Controlled by the Equilibrium Point Hypothesis. Speech Communication 22, 185–205 (1997)CrossRefGoogle Scholar
  12. 12.
    Heil, M., Jensen, O.E.: Flows in Deformable Tubes and Channels. Theoretical Models and Biological Applications. In: Carpenter, P., Pedley, T. (eds.) Flow in Collapsible Tubes and Past Other Highly Compliant Boundaries, ch. 2. Kluwer, Dordrecht (2005)Google Scholar
  13. 13.
    Napadow, V., Chen, Q., Wedeen, V., Gilbert, R.: Intramural Mechanics of the Human Tongue in Association with Physiological Deformations. J. Biomech. 32, 1–12 (1999)CrossRefGoogle Scholar
  14. 14.
    Zienkiewicz, O., Taylor, R.: The Finite Element Method. Basic Formulation and Linear Problems. McGraw-Hill Book Company, New York (1989)Google Scholar
  15. 15.
    Cotin, S., Delingette, H., Ayache, N.: Real-Time Elastic Deformations of Soft Tissues for Surgery Simulation. IEEE Transactions On Visualization And Computer Graphics 5(1), 62–73 (1999)CrossRefGoogle Scholar
  16. 16.
    Lagrée, P., Lorthois, S.: The RNS/Prandtl Equations and their Link with Other Asymptotic Descriptions: Application to the Wall Shear Stress Scaling in a Constricted Pipe. International Journal of Engineering Science 43, 352–378 (2005)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Gould, G., Whyte, K., Rhind, G., Airlie, M., Catterall, J., Shapiro, C., Douglas, N.: The Sleep Hypopnea Syndrome. Am. Rev. Respir. Dis. 137, 895–898 (1988)Google Scholar
  18. 18.
    Trinder, J., Kay, A., Kleiman, J., Dunai, J.: Gender Differences in Airway Resistance during Sleep. J. Appl. Physiol. 83(6), 1986–1997 (1997)Google Scholar
  19. 19.
    Bruyns, C., Ottensmeyer, M.: Measurements of Soft-Tissue Mechanical Properties to Support Development of a Physically Based Virtual Animal Model. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2488, pp. 282–289. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  20. 20.
    Rama, A., Tekwani, S., Kushida, C.: Sites of Obstruction in Obstructive Sleep Apnea. Chest 122(4), 1139–1147 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Franz Chouly
    • 1
    • 2
  • Annemie Van Hirtum
    • 2
  • Pierre-Yves Lagrée
    • 3
  • Jean-Roch Paoli
    • 4
  • Xavier Pelorson
    • 2
  • Yohan Payan
    • 1
  1. 1.Laboratoire TIMC, UMR CNRS 5525Université Joseph FourierLa TroncheFrance
  2. 2.Institut de la Communication ParléeINPG, UMR CNRS Q5009GrenobleFrance
  3. 3.Laboratoire de Modélisation en MécaniqueUMR CNRS 7607ParisFrance
  4. 4.TSA 40031Centre Hospitalier Universitaire PurpanToulouseFrance

Personalised recommendations